Korean J Blood Transfus.
2013 Apr;24(1):21-32.
Functional Interaction of HIF-1 and NF-kappaB Increasing the Transcriptional Activation of TNF-alpha Gene in Monocytes
- Affiliations
-
- 1Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea. molecule85@pusan.ac.kr
- 2Department of Laboratory Medicine, School of Medicine, Pusan National University, Busan, Korea. hhkim@pusan.ac.kr
Abstract
- BACKGROUND
Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine fulfilling a broad variety of immunoregulatory functions. Monocytes and macrophages play a pivotal role in inflammation and immune regulation. NF-kappaB and HIF-1 are known to increase expression of the TNF-alpha gene in a separate way.
METHODS
Human monocytic leukemia, U937 cells, were transfected using the standard electroporation method for intracellular expression of NF-kappaB and HIF-1. We performed analysis using the mammalian two-hybrid assay and co-immunoprecipitation assay for detection of protein interaction of both proteins. In addition, chromatin immunoprecipitation analysis was performed for examination of NF-kappaB and HIF-1 binding on the TNF-alpha gene promoter.
RESULTS
Here we show that NF-kappaB and HIF-1 cooperatively induced an increase in expression of the TNF-alpha gene dependent on promoter activity by the direct protein interaction of these two transcription factors. Hypoxia signaling induced marked enhancement of the transactivation of TNF-alpha promoter by HIF-1 and NF-kappaB. A tandem NF-kappaB/HIF-1 binding site was identified within the TNF-alpha promoter, which acted as a strong enhancer element. Physical association of the Rel domain of NF-kappaB and the N-TD domain of HIF-1 was required. Hypoxia treatment also resulted in a significant increase in the protein interaction of NF-kappaB and HIF-1 in vivo. Both transcription factors were recruited on the chromatin TNF-alpha promoter dependent on hypoxia stimuli.
CONCLUSION
The results of this study indicate that a variety of extracellular signals for activation of TNF-alpha gene expression might converge on the transcriptional regulation through the NF-kappaB/HIF-1 signaling pathway.