Ann Lab Med.  2019 Mar;39(2):190-199. 10.3343/alm.2019.39.2.190.

Antimicrobial Susceptibility Patterns of Anaerobic Bacterial Clinical Isolates From 2014 to 2016, Including Recently Named or Renamed Species

Affiliations
  • 1Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
  • 2Department of Laboratory Medicine, Hanyang University Seoul Hospital, Hanyang University College of Medicine, Seoul, Korea. yangsoon@hanyang.ac.kr

Abstract

BACKGROUND
Anaerobic bacterial resistance trends may vary across regions or institutions. Regional susceptibility patterns are pivotal in the empirical treatment of anaerobic infections. We determined the antimicrobial resistance patterns of clinically important anaerobic bacteria, including recently named or renamed anaerobes.
METHODS
A total of 521 non-duplicated clinical isolates of anaerobic bacteria were collected from a tertiary-care hospital in Korea between 2014 and 2016. Anaerobes were isolated from blood, body fluids, and abscess specimens. Each isolate was identified by conventional methods and by Bruker biotyper mass spectrometry (Bruker Daltonics, Leipzig, Germany) or VITEK matrix-assisted laser desorption ionization time-of-flight mass spectrometry (bioMérieux, Marcy-l'Étoile, France). Antimicrobial susceptibility was tested using the agar dilution method according to the CLSI guidelines. The following antimicrobials were tested: piperacillin-tazobactam, cefoxitin, cefotetan, imipenem, meropenem, clindamycin, moxifloxacin, chloramphenicol, tetracycline, and metronidazole.
RESULTS
Most Bacteroides fragilis isolates were susceptible to piperacillin-tazobactam, imipenem, and meropenem. The non-fragilis Bacteroides group (including B. intestinalis, B. nordii, B. pyogenes, B. stercoris, B. salyersiae, and B. cellulosilyticus) was resistant to meropenem (14%) and cefotetan (71%), and Parabacteroides distasonis was resistant to imipenem (11%) and cefotetan (95%). Overall, the Prevotella and Fusobacterium isolates were more susceptible to antimicrobial agents than the B. fragilis group isolates. Anaerobic gram-positive cocci exhibited various resistance rates to tetracycline (6-86%). Clostridioides difficile was highly resistant to penicillin, cefoxitin, imipenem, clindamycin, and moxifloxacin.
CONCLUSIONS
Piperacillin-tazobactam, cefoxitin, and carbapenems are highly active β-lactam agents against most anaerobes, including recently named or renamed species.

Keyword

Antimicrobial resistance pattern; Anaerobes; Bacteroides; Korea

MeSH Terms

Abscess
Agar
Anti-Infective Agents
Bacteria, Anaerobic
Bacteroides
Bacteroides fragilis
Body Fluids
Carbapenems
Cefotetan
Cefoxitin
Chloramphenicol
Clindamycin
Fusobacterium
Gram-Positive Cocci
Imipenem
Korea
Mass Spectrometry
Methods
Metronidazole
Penicillins
Prevotella
Tetracycline
Agar
Anti-Infective Agents
Carbapenems
Cefotetan
Cefoxitin
Chloramphenicol
Clindamycin
Imipenem
Metronidazole
Penicillins
Tetracycline

Cited by  2 articles

Clinical Differences in Patients Infected with Fusobacterium and Antimicrobial Susceptibility of Fusobacterium Isolates Recovered at a Tertiary-Care Hospital in Korea
Myungsook Kim, Shin Young Yun, Yunhee Lee, Hyukmin Lee, Dongeun Yong, Kyungwon Lee
Ann Lab Med. 2022;42(2):188-195.    doi: 10.3343/alm.2022.42.2.188.

The First Case of Preauricular Fistular Abscess Caused by Peptoniphilus grossensis
Mutbyul Kim, Hyoshim Shin, Dong-Hyun Lee, Eun-Ha Koh, Jung-Hyun Byun
Ann Lab Med. 2022;42(4):488-490.    doi: 10.3343/alm.2022.42.4.488.


Reference

1. Schuetz AN. Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Clin Infect Dis. 2014; 59:698–705. PMID: 24867792.
2. Hecht DW. Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe. 2006; 12:115–121. PMID: 16765857.
3. Lee Y, Park YJ, Kim MN, Uh Y, Kim MS, Lee K. Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012. Ann Lab Med. 2015; 35:479–486. PMID: 26206683.
4. Hastey CJ, Boyd H, Schuetz AN, Anderson K, Citron DM, Dzink-Fox J, et al. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007–2009 to 2010–2012 based on the CLSI methodology. Anaerobe. 2016; 42:27–30. PMID: 27427465.
5. CLSI. CLSI M11-A8. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard. 8th ed. Wayne, PA: Clinical and Laboratory Standards Institute;2012.
6. Lee K, Shin HB, Chong Y. Antimicrobial resistance patterns of Bacteroides fragilis group organisms in Korea. Yonsei Med J. 1998; 39:578–586. PMID: 10097686.
7. Lee Y, Park Y, Kim MS, Yong D, Jeong SH, Lee K, et al. Antimicrobial susceptibility patterns for recent clinical isolates of anaerobic bacteria in South Korea. Antimicrob Agents Chemother. 2010; 54:3993–3997. PMID: 20585132.
8. Roh KH, Kim S, Kim CK, Yum JH, Kim MS, Yong D, et al. Resistance trends of Bacteroides fragilis group over an 8-year period, 1997–2004, in Korea. Korean J Lab Med. 2009; 29:293–298. PMID: 19726890.
9. Yim J, Lee Y, Kim M, Seo YH, Kim WH, Yong D, et al. Antimicrobial susceptibility of clinical isolates of Bacteroides fragilis group organisms recovered from 2009 to 2012 in a Korean hospital. Ann Lab Med. 2015; 35:94–98. PMID: 25553287.
10. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007; 20:593–621. PMID: 17934076.
11. Sóki J, Hedberg M, Patrick S, Bálint B, Herczeg R, Nagy I, et al. Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J Antimicrob Chemother. 2016; 71:2441–2448. PMID: 27246231.
12. Merchan C, Parajuli S, Siegfried J, Scipione MR, Dubrovskaya Y, Rahimian J. Multidrug-resistant Bacteroides fragilis bacteremia in a US resident: an emerging challenge. Case Rep Infect Dis. 2016; 2016:3607125. PMID: 27418986.
13. Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006; 56:1599–1605. PMID: 16825636.
14. Huys G, Vancanneyt M, D'Haene K, Falsen E, Wauters G, Vandamme P. Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. Int J Syst Evol Microbiol. 2007; 57:1442–1446. PMID: 17625172.
15. Downes J, Olsvik B, Hiom SJ, Spratt DA, Cheeseman SL, Olsen I, et al. Bulleidia extructa gen. nov., sp. nov., isolated from the oral cavity. Int J Syst Evol Microbiol. 2000; 50:979–983. PMID: 10843035.
16. Tee W, Midolo P, Janssen PH, Kerr T, Dyall-Smith ML. Bacteremia due to Leptotrichia trevisanii sp. nov. Eur J Clin Microbiol Infect Dis. 2001; 20:765–769. PMID: 11783691.
17. Rautio M, Eerola E, Väisänen-Tunkelrott ML, Molitoris D, Lawson P, Collins MD, et al. Collins MD, et al. Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol. 2003; 26:182–188. PMID: 12866844.
18. Song Y, Könönen E, Rautio M, Liu C, Bryk A, Eerola E, et al. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol. 2006; 56:1985–1990. PMID: 16902041.
19. CLSI. CLSI M100. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard. 27th ed. Wayne, PA: Clinical and Laboratory Standards Institute;2017.
20. Yong D, Lee Y, Jeong SH, Lee K, Chong Y. Evaluation of double-disk potentiation and disk potentiation tests using dipicolinic acid for detection of metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2012; 50:3227–3232. PMID: 22837321.
21. Snydman DR, Jacobus NV, McDermott LA, Goldstein EJ, Harrell L, Jenkins SG, et al. Trends in antimicrobial resistance among Bacteroides species and Parabacteroides species in the United States from 2010–2012 with comparison to 2008–2009. Anaerobe. 2017; 43:21–26. PMID: 27867083.
22. Sóki J, Edwards R, Hedberg M, Fang H, Nagy E, Nord CE, et al. Examination of cfiA-mediated carbapenem resistance in Bacteroides fragilis strains from a European antibiotic susceptibility survey. Int J Antimicrob Agents. 2006; 28:497–502. PMID: 17097857.
23. Papaparaskevas J, Pantazatou A, Katsandri A, Houhoula DP, Legakis NJ, Tsakris A, et al. Moxifloxacin resistance is prevalent among Bacteroides and Prevotella species in Greece. J Antimicrob Chemother. 2008; 62:137–141. PMID: 18385145.
24. Lee JH, Lee Y, Lee K, Riley TV, Kim H. The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. J Med Microbiol. 2014; 63:819–823. PMID: 24696516.
25. Barberis C, Budia M, Palombarani S, Rodriguez CH, Ramírez MS, Arias B, et al. Antimicrobial susceptibility of clinical isolates of Actinomyces and related genera reveals an unusual clindamycin resistance among Actinomyces urogenitalis strains. J Glob Antimicrob Resist. 2017; 8:115–120. PMID: 28109846.
26. Lee MR, Huang YT, Liao CH, Chuang TY, Wang WJ, Lee SW, et al. Clinical and microbiological characteristics of bacteremia caused by Eggerthella, Paraeggerthella and Eubacterium species at a university hospital in Taiwan, 2001-2010. J Clin Microbiol. 2012; 50:2053–2055. PMID: 22495556.
27. Venugopal AA, Szpunar S, Johnson LB. Risk and prognostic factors among patients with bacteremia due to Eggerthella lenta. Anaerobe. 2012; 18:475–478. PMID: 22677263.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr