Biomol Ther.
2014 Jan;22(1):27-34.
Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels
- Affiliations
-
- 1College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea. hwchang@yu.ac.kr seungho@yumail.ac.kr
- 2School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Abstract
- Curcumin is naturally occurring polyphenolic compound found in turmeric and has many pharmacological activities. The present study was undertaken to evaluate anti-allergic inflammatory activity of curcumin, and to investigate its inhibitory mechanisms in immunoglobulin E (IgE)/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and in a mouse model of IgE/Ag-mediated passive systemic anaphylaxis (PSA). Curcumin inhibited cyclooxygenase-2 (COX-2) dependent prostaglandin D2 (PGD2) and 5-lipoxygenase (5-LO) dependent leukotriene C4 (LTC4) generation dose-dependently in BMMCs. To probe the mechanism involved, we assessed the effects of curcumin on the phosphorylation of Syk and its downstream signal molecules. Curcumin inhibited intracellular Ca2+ influx via phospholipase Cgamma1 (PLCgamma1) activation and the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappaB (NF-kappaB) pathway. Furthermore, the oral administration of curcumin significantly attenuated IgE/Ag-induced PSA, as determined by serum LTC4, PGD2, and histamine levels. Taken together, this study shows that curcumin offers a basis for drug development for the treatment of allergic inflammatory diseases.