Nat Prod Sci.  2017 Mar;23(1):1-4. 10.20307/nps.2017.23.1.1.

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

Affiliations
  • 1College of Pharmacy, Dongguk University-Seoul, 32, Dongguk-lo, Ilsandong-gu, Goyang Gyeonggi-do 410-820, Republic of Korea. f2744@dongguk.edu

Abstract

Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.

Keyword

Sinensetin; Interleukin-6; STAT3; NF-κB

MeSH Terms

Calcimycin
Enzyme-Linked Immunosorbent Assay
Humans*
Interleukin-4
Interleukin-5
Interleukin-6*
Interleukin-8
Interleukins
Mast Cells*
NF-kappa B*
Phosphorylation
Polymerase Chain Reaction
Reverse Transcription
RNA, Messenger
STAT3 Transcription Factor
Transducers*
Calcimycin
Interleukin-4
Interleukin-5
Interleukin-6
Interleukin-8
Interleukins
NF-kappa B
RNA, Messenger
STAT3 Transcription Factor

Figure

  • Fig. 1 Effect of sinensetin on the release of IL-6 (A) and the expression of IL-6 mRNA (B) in PMA plus A23187-stimulated HMC-1. Statistical significance: *P < 0.05 and **P < 0.005, as compared to the PMA plus A23187 treated group. Values shown are the mean ± S.E. of duplicate determinations from three separate experiments.

  • Fig. 2 Effect of sinensetin on phosphorylation of STAT3 in PMA plus A23187-stimulated HMC-1. HMC-1 was pretreated with sinensetin for 0.5 h and then stimulated for 0.5 h to detect phosphorylated STAT3.

  • Fig. 3 Effect of sinensetin on the PMA plus A23187-induced activation of the NF-κB Pathway in HMC-1. HMC-1 was pretreated with sinensetin for 0.5 h and then stimulated for 10 min to detect cytoplasmic IκB-α, cytoplasmic p65 NF-κB and nuclear p65 NF-κB by Western blot analysis.

  • Fig. 4 Effect of sinensetin on the inflammatory mediators in stimulated HMC-1. HMC-1 was incubated with indicated concentration of sinensetin for 0.5 h, and then incubated with PMA plus A23187 for 6 h. mRNA level of IL-4, IL-5,and IL-8 were normalizes to that of GAPDH. *P < 0.05 and **P < 0.005, as compared to the PMA plus A23187 treated group.


Reference

1. Wolff B, Burns AR, Middleton J, Rot A. J Exp Med. 1998; 188:1757–1762.
2. Utgaard JO, Jahnsen FL, Bakka A, Brandtzaeg P, Haraldsen G. J Exp Med. 1998; 188:1751–1756.
3. Baggiolini M, Loetscher P, Moser B. Int J Immunopharmacol. 1995; 17:103–108.
4. Ronis MJ, Butura A, Korourian S, Shankar K, Simpson P, Badeaux J, Albano E, Ingelman-Sundberg M, Badger TM. Exp Biol Med (Maywood). 2008; 233:344–355.
5. Conti P, Kempuraj D, Di Gioacchino M, Boucher W, Letourneau R, Kandere K, Barbacane RC, Reale M, Felaco M, Frydas S, Theoharides TC. Allergy Asthma Proc. 2002; 23:331–335.
Article
6. Kikuchi T, Ishida S, Kinoshita T, Sakuma S, Sugawara N, Yamashita T, Koike K. Cytokine. 2002; 20:200–209.
7. Castellani ML, Ciampoli C, Felaco M, Tetè S, Conti CM, Salini V, De Amicis D, Orso C, Antinolfi PL, Caraffa A, Cerulli G, Boscolo P, Theoharides TC, Conti P, Kepuraj D. Clin Invest Med. 2008; 31:E362–E372.
8. Nakahata T, Toru H. Int J Hematol. 2002; 75:350–356.
9. Kim SH, Kim SH, Kim SH, Moon JY, Park WH, Kim CH, Shin TY. Biol Pharm Bull. 2006; 29:494–498.
10. Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D. Immunol Rev. 2007; 217:65–78.
11. Ihle JN. Cell. 1996; 84:331–334.
12. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S. Proc Natl Acad Sci U S A. 1997; 94:3801–3804.
13. Zhong Z, Wen Z, Darnell JE Jr. Science. 1994; 264:95–98.
14. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C. J Biol Chem. 2007; 282:9358–9363.
15. Laavola M, Nieminen R, Yam MF, Sadikun A, Asmawi MZ, Basir R, Welling J, Vapaatalo H, Korhonen R, Moilanen E. Planta Med. 2012; 78:779–786.
16. Shin HS, Kang SI, Yoon SA, Ko HC, Kim SJ. Biosci Biotechnol Biochem. 2012; 76:847–849.
17. Kishimoto T. Annu Rev Immunol. 2005; 23:1–21.
18. Quintanilla-Martinez L, Kremer M, Specht K, Calzada-Wack J, Nathrath M, Schaich R, Höfler H, Fend F. Am J Pathol. 2003; 162:1449–1461.
19. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T. Cell. 1994; 77:63–71.
20. Darnell JE Jr, Kerr IM, Stark GR. Science. 1994; 264:1415–1421.
21. Murray PJ. J Immunol. 2007; 178:2623–2629.
22. Hodge DR, Hurt EM, Farrar WL. Eur J Cancer. 2005; 41:2502–2512.
23. Lee MM, Chui RK, Tam IY, Lau AH, Wong YH. J Immunol. 2012; 189:5266–5276.
24. Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Rebollo MP, Alvarez-Franco F, Rebollo A. Mol Immunol. 2006; 43:1065–1079.
25. Lappas M, Permezel M, Georgiou HM, Rice GE. Biol Reprod. 2002; 67:668–673.
26. Ivanenkov YA, Balakin KV, Tkachenko SE. Drugs R D. 2008; 9:397–434.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr