Biomol Ther.  2013 Mar;21(2):114-120.

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf

Affiliations
  • 1Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon, Incheon 406-772, Republic of Korea. mikelee@incheon.ac.kr

Abstract

Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 (IC50<0.5 microM), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 (IC50>20 microM). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at G0/G1 with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.

Keyword

UI-152; B-Raf inhibitor; Melanoma; Drug resistance; Autophagy; Cell cycle arrest

MeSH Terms

Apoptosis*
Autophagy
Cell Cycle Checkpoints
Clone Cells
Drug Resistance
Drug Resistance, Multiple
Fluorescent Antibody Technique
Humans
Melanoma*
P-Glycoprotein
Parents
P-Glycoprotein
Full Text Links
  • BT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr