Korean J Pain.  2019 Jul;32(3):160-167. 10.3344/kjp.2019.32.3.160.

The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems

Affiliations
  • 1Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran. kaboutari-j@sku.ac.ir
  • 2Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
  • 3Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.

Abstract

BACKGROUND
Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test.
METHODS
On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded.
RESULTS
Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin.
CONCLUSIONS
It seems that antinocicptive effects of artemisinin are mediated by GABAA receptors.

Keyword

Analgesics, Opioid; Animals; Artemisinin; Gamma-Aminobutyric Acid; Inflammation; Mice; Pain; Receptors, GABA; Writhing Test

MeSH Terms

Acetic Acid
Adult
Analgesics
Analgesics, Opioid
Animals
Bicuculline
Ethanol
gamma-Aminobutyric Acid
Humans
Indomethacin
Inflammation
Male
Mice
Naloxone
Neuralgia
Receptors, GABA
Acetic Acid
Analgesics
Analgesics, Opioid
Bicuculline
Ethanol
Indomethacin
Naloxone
Receptors, GABA
gamma-Aminobutyric Acid

Figure

  • Fig. 1 Flow diagram of experimental procedure. i.p.: intraperitoneal.


Cited by  2 articles

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
Mochi Guo, Zongming Jiang, Yonghao Chen, Fei Wang, Zhifeng Wang
Korean J Pain. 2021;34(2):176-184.    doi: 10.3344/kjp.2021.34.2.176.

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice
Pegah Yaghooti, Samad Alimoahmmadi
Korean J Pain. 2024;37(3):218-232.    doi: 10.3344/kjp.23355.


Reference

1. Labuz D, Celik MÖ, Zimmer A, Machelska H. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain. Sci Rep. 2016; 6:32799. DOI: 10.1038/srep32799. PMID: 27605249. PMCID: 5015056.
Article
2. Onasanwo SA, Rotu RA. Antinociceptive and anti-inflammatory potentials of kolaviron: mechanisms of action. J Basic Clin Physiol Pharmacol. 2016; 27:363–70. PMID: 26812784.
Article
3. Staud R. Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert Rev Neurother. 2012; 12:577–85. DOI: 10.1586/ern.12.41. PMID: 22550986. PMCID: 3373184.
Article
4. Zarei S, Bigizadeh S, Pourahmadi M, Ghobadifar MA. Chronic pain and its determinants: a population-based study in Southern Iran. Korean J Pain. 2012; 25:245–53. DOI: 10.3344/kjp.2012.25.4.245. PMID: 23091685. PMCID: 3468801.
Article
5. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. J Pain. 2013; 14:1255–69. DOI: 10.1016/j.jpain.2013.06.008. PMID: 24035349. PMCID: 3818391.
Article
6. Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol. 2011; 24:400–7. DOI: 10.1097/ACO.0b013e32834871df. PMID: 21659872. PMCID: 3290396.
Article
7. LaGraize SC, Fuchs PN. GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Exp Neurol. 2007; 204:182–94. DOI: 10.1016/j.expneurol.2006.10.007. PMID: 17141761. PMCID: PMC1865116.
Article
8. Hasanein P, Mirazi N, Javanmardi K. GABAA receptors in the central nucleus of amygdala (CeA) affect on pain modulation. Brain Res. 2008; 1241:36–41. DOI: 10.1016/j.brainres.2008.09.041. PMID: 18838064.
Article
9. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW 4th, Pin JP. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev. 2009; 60:43–56. DOI: 10.1016/j.brainresrev.2008.12.007. PMID: 19146876.
Article
10. Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol. 2006; 54:1–27. DOI: 10.1016/S1054-3589(06)54001-3. PMID: 17175808.
Article
11. Neto FL, Ferreira-Gomes J, Castro-Lopes JM. Distribution of GABA receptors in the thalamus and their involvement in nociception. Adv Pharmacol. 2006; 54:29–51. DOI: 10.1016/S1054-3589(06)54002-5. PMID: 17175809.
Article
12. Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, et al. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem Int. 2017; 108:27–33. DOI: 10.1016/j.neuint.2017.02.004. PMID: 28192150.
Article
13. Qnais EY, Alatshan AZ, Bseiso YG. Chemical composition, antinociceptive and anti-inflammatory effects of Artemisia herba-alba essential oil. J Food Agric Environ. 2016; 14:20–7.
14. Kaboutari J, Arab HA, Ebrahimi K, Rahbari S. Prophylactic and therapeutic effects of a novel granulated formulation of Artemisia extract on broiler coccidiosis. Trop Anim Health Prod. 2014; 46:43–8. DOI: 10.1007/s11250-013-0444-x. PMID: 23868546.
Article
15. Kaboutari Katadj J, Rafieian-Kopaei M, Nourani H, Karimi B. Wound healing effects of Artemisia sieberi extract on the second degree burn in mice skin. J Herbmed Parmacol. 2016; 5:67–71.
16. Favero Fde F, Grando R, Nonato FR, Sousa IM, Queiroz NC, Longato GB, et al. Artemisia annua L.: evidence of sesquiterpene lactones’ fraction antinociceptive activity. BMC Complement Altern Med. 2014; 14:266. DOI: 10.1186/1472-6882-14-266. PMID: 25065946. PMCID: PMC4122781.
Article
17. Lee S. Artemisinin, promising lead natural product for various drug developments. Mini Rev Med Chem. 2007; 7:411–22. DOI: 10.2174/138955707780363837. PMID: 17430226.
Article
18. Salah SM, Jäger AK. Two flavonoids from Artemisia herbaalba Asso with in vitro GABAA-benzodiazepine receptor activity. J Ethnopharmacol. 2005; 99:145–6. DOI: 10.1016/j.jep.2005.01.031. PMID: 15848034.
19. Li J, Casteels T, Frogne T, Ingvorsen C, Honoré C, Courtney M, et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell. 2017; 168:86–100.e15. DOI: 10.1016/j.cell.2016.11.010. PMID: 27916275. PMCID: PMC5236063.
Article
20. Liu HK. Artemisinin, GABA signaling and cell reprogramming: when an old drug meets modern medicine. Sci Bull. 2017; 62:386–7. DOI: 10.1016/j.scib.2017.02.006.
Article
21. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983; 16:109–10. DOI: 10.1016/0304-3959(83)90201-4. PMID: 6877845.
Article
22. Zendehdel M, Torabi Z, Hassanpour S. Antinociceptive mechanisms of Bunium persicum essential oil in the mouse writhing test: role of opioidergic and histaminergic systems. Vet Med. 2015; 60:63–70. DOI: 10.17221/7988-VETMED.
Article
23. de Sousa DP. Medicinal essential oils: chemical, pharmacological and therapeutic aspects. New York: Nova Science Publishers;2012.
24. Asahi Y, Yonehara N. Involvement of GABAergic systems in manifestation of pharmacological activity of desipramine. Jpn J Pharmacol. 2001; 86:316–22. DOI: 10.1254/jjp.86.316. PMID: 11488432.
Article
25. Fonsêca DV, Salgado PR, de Carvalho FL, Salvadori MG, Penha AR, Leite FC, et al. Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol. 2016; 30:14–22. DOI: 10.1111/fcp.12166. PMID: 26791997.
Article
26. Scoto GM, Aricò G, Ronsisvalle S, Parenti C. Effects of intraplantar nocistatin and (±)-J 113397 injections on nociceptive behavior in a rat model of inflammation. Pharmacol Biochem Behav. 2012; 100:639–44. DOI: 10.1016/j.pbb.2011.11.007. PMID: 22120202.
Article
27. Taylor F, Dickenson A. Nociceptin/orphanin FQ. A new opioid, a new analgesic? Neuroreport. 1998; 9:R65–70. PMID: 9760102.
28. Jia Y, Linden DR, Serie JR, Seybold VS. Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci Lett. 1998; 250:21–4. DOI: 10.1016/S0304-3940(98)00430-3. PMID: 9696056.
Article
29. Andoh T, Itoh M, Kuraishi Y. Nociceptin gene expression in rat dorsal root ganglia induced by peripheral inflammation. Neuroreport. 1997; 8:2793–6. DOI: 10.1097/00001756-199708180-00028. PMID: 9295119.
Article
30. Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets. 2011; 12:1560–73. DOI: 10.2174/138945011798109437. PMID: 21561425.
Article
31. Hanrahan JR, Chebib M, Johnston GA. Flavonoid modulation of GABA(A) receptors. Br J Pharmacol. 2011; 163:234–45. DOI: 10.1111/j.1476-5381.2011.01228.x. PMID: 21244373. PMCID: 3087128.
32. Chadwick M, Trewin H, G awthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013; 14:12780–805. DOI: 10.3390/ijms140612780. PMID: 23783276. PMCID: 3709812.
Article
33. Dinari S, Monajemi R, Amjad L. Analgesic and anti-inflammatory effects of methanol extracts of aerial parts Artemisia aucheri in mice (Balb/c). Scinzer J Agric Biol Sci. 2016; 2:33–8.
34. Koga K, Shimoyama S, Yamada A, Furukawa T, Nikaido Y, Furue H, et al. Chronic inflammatory pain induced GABAergic synaptic plasticity in the adult mouse anterior cingulate cortex. Mol Pain. 2018; 14:1744806918783478. DOI: 10.1177/1744806918783478. PMID: 29956582. PMCID: PMC6096674.
Article
35. Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, et al. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J. 2018; 32:4172–89. DOI: 10.1096/fj.201701347R. PMID: 29505303. PMCID: 6044061.
Article
36. Anseloni VC, Gold MS. Inflammation-induced shift in the valence of spinal GABA-A receptor-mediated modulation of nociception in the adult rat. J Pain. 2008; 9:732–8. DOI: 10.1016/j.jpain.2008.03.004. PMID: 18467182. PMCID: 2581496.
Article
37. Vranken JH. Mechanisms and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem. 2009; 9:71–8. DOI: 10.2174/187152409787601932. PMID: 20021340.
Article
38. McDonald AJ, Mascagni F, Muller JF. Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res. 2004; 1018:147–58. DOI: 10.1016/j.brainres.2004.05.053. PMID: 15276873.
Article
39. Zhang XL, Lee KY, Priest BT, Belfer I, Gold MS. Inflammatory mediator-induced modulation of GABAA currents in human sensory neurons. Neuroscience. 2015; 310:401–9. DOI: 10.1016/j.neuroscience.2015.09.048. PMID: 26415765. PMCID: 4633346.
Article
40. Jang IJ, Davies AJ, Akimoto N, Back SK, Lee PR, Na HS, et al. Acute inflammation reveals GABAA receptor-mediated nociception in mouse dorsal root ganglion neurons via PGE2 receptor 4 signaling. Physiol Rep. 2017; 5:e13178. DOI: 10.14814/phy2.13178. PMID: 28438981. PMCID: PMC5408276.
41. Kim MJ, Park YH, Yang KY, Ju JS, Bae YC, Han SK, et al. Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats. Korean J Physiol Pharmacol. 2017; 21:65–74. DOI: 10.4196/kjpp.2017.21.1.65. PMID: 28066142. PMCID: 5214912.
Article
42. Malcangio M. GABAB receptors and pain. Neuropharmacology. 2018; 136(Part A):102–5. DOI: 10.1016/j.neuropharm.2017.05.012. PMID: 28504122.
43. Zhu Y, Lu SG, Gold MS. Persistent inflammation increases GABA-induced depolarization of rat cutaneous dorsal root ganglion neurons in vitro. Neuroscience. 2012; 220:330–40. DOI: 10.1016/j.neuroscience.2012.06.025. PMID: 22728089. PMCID: 3412885.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr