Korean J Pain.  2024 Jul;37(3):218-232. 10.3344/kjp.23355.

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice

Affiliations
  • 1Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran

Abstract

Background
Cynara scolymus has bioactive constituents and has been used for therapeutic actions. The present study was undertaken to investigate the mechanisms underlying pain-relieving effects of the hydroethanolic extract of C. scolymus (HECS).
Methods
The antinociceptive activity of HECS was assessed through formalin and acetic acid-induced writhing tests at doses of 50, 100 and 200 mg/kg intraperitoneally. Additionally, naloxone (non-selective opioid receptors antagonist, 2 mg/kg), atropine (non-selective muscarinic receptors antagonist, 1 mg/kg), chlorpheniramine (histamine H1 -receptor antagonist, 20 mg/kg), cimetidine (histamine H2 -receptor antagonist, 12.5 mg/kg), flumazenil (GABAA /BDZ receptor antagonist, 5 mg/kg) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) were used to determine the systems implicated in HECS-induced analgesia. Impact of HECS on locomotor activity was executed by open-field test. Determination of total phenolic content (TPC) and total flavonoid content (TFC) was done. Evaluation of antioxidant activity was conducted employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay.
Results
HECS (50, 100 and 200 mg/kg) significantly indicated dose dependent antinociceptive activity against pain-related behavior induced by formalin and acetic acid (P < 0.001). Pretreatment with naloxone, atropine and flumazenil significantly reversed HECS-induced analgesia. Antinociceptive effect of HECS remained unaffected by chlorpheniramine, cimetidine and cyproheptadine. Locomotor activity was not affected by HECS. TPC and TFC of HECS were 59.49 ± 5.57 mgGAE/g dry extract and 93.39 ± 17.16 mgRE/g dry extract, respectively. DPPH free radical scavenging activity (IC 50 ) of HECS was 161.32 ± 0.03 µg/mL.
Conclusions
HECS possesses antinociceptive activity which is mediated via opioidergic, cholinergic and GABAergic pathways.

Keyword

Analgesic; Cholinergic Agents; Cynara scolymus; GABA; Mice; Opioid; Pain Measurement

Figure

  • Fig. 1 Effect of HECS (50, 100 and 200 mg/kg) and morphine (5 mg/kg) on the formalin-induced pain responses (A). Effect of pretreatment with naloxone (non-selective opioid receptors antagonist, 2 mg/kg) (B), atropine (non-selective muscarinic receptor antagonist, 1 mg/kg) (C), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg) (D), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg) (E), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) (F) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) (G) on the antinociceptive activity of HECS in formalin-induced pain responses. Data are expressed as mean ± standard error of mean (n = 6 mice in each group). Data were analyzed using one-way ANOVA followed by Tukey’s HSD post-hoc test. HECS: hydroethanolic extract of Cynara scolymus. *P < 0.05: compared with control group in each phase. #P < 0.05: compared with HECS (200 mg/kg)-treated group in each phase.

  • Fig. 2 Effect of HECS (50, 100 and 200 mg/kg) and indomethacin (5 mg/kg) on the acetic acid-induced writhing (A). Effect of pretreatment with naloxone (non-selective opioid receptors antagonist, 2 mg/kg) (B), atropine (non-selective muscarinic receptor antagonist, 1 mg/kg) (C), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg) (D), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg) (E), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) (F) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) (G) on the antinociceptive activity of HECS in acetic acid-induced writhing. Data are expressed as mean ± standard error of mean (n = 6 mice in each group). Data were analyzed using one-way ANOVA followed by Tukey’s HSD post-hoc test. HECS: hydroethanolic extract of Cynara scolymus. *P < 0.05: compared with control group. #P < 0.05: compared with HECS (200 mg/kg)-treated group.

  • Fig. 3 Effect of treatment of mice with HECS (50, 100 and 200 mg/kg) on the number of crossings (A) and number of rearings (B) in the open-field test. Data are expressed as mean ± standard error of mean (n = 6 mice in each group). HECS: hydroethanolic extract of Cynara scolymus, i.p.: intraperitoneal.


Reference

1. eekeesoon DP Sr, Mahomoodally MF. 2014; Ethnopharmacological analysis of medicinal plants and animals used in the treatment and management of pain in Mauritius. J Ethnopharmacol. 157:181–200. DOI: 10.1016/j.jep.2014.09.030. PMID: 25261690.
Article
2. Olorukooba AB, Odoma S. 2019; Elucidation of the possible mechanism of analgesic action of methanol stem bark extract of Uapaca togoensis pax in mice. J Ethnopharmacol. 245:112156. DOI: 10.1016/j.jep.2019.112156. PMID: 31415847.
Article
3. Mohammadifard F, Alimohammadi S. 2018; Chemical composition and role of opioidergic system in antinociceptive effect of Ziziphora Clinopodioides essential oil. Basic Clin Neurosci. 9:357–66. DOI: 10.32598/bcn.9.5.357. PMID: 30719250. PMCID: PMC6360493.
4. Koohsari S, Sheikholeslami MA, Parvardeh S, Ghafghazi S, Samadi S, Poul YK, et al. 2020; Antinociceptive and antineuropathic effects of cuminaldehyde, the major constituent of Cuminum cyminum seeds: possible mechanisms of action. J Ethnopharmacol. 255:112786. DOI: 10.1016/j.jep.2020.112786. PMID: 32222574.
5. Ben Salem M, Affes H, Ksouda K, Dhouibi R, Sahnoun Z, Hammami S, et al. 2015; Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr. 70:441–53. DOI: 10.1007/s11130-015-0503-8. PMID: 26310198.
Article
6. Mejri F, Baati T, Martins A, Selmi S, Luisa Serralheiro M, Falé PL, et al. 2020; Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (Cynara scolymus L.) floral stems: towards the valorization of food by-products. Food Chem. 333:127506. DOI: 10.1016/j.foodchem.2020.127506. PMID: 32679417.
Article
7. Salekzamani S, Ebrahimi-Mameghani M, Rezazadeh K. 2019; The antioxidant activity of artichoke (Cynara scolymus): a systematic review and meta-analysis of animal studies. Phytother Res. 33:55–71. DOI: 10.1002/ptr.6213. PMID: 30345589.
Article
8. Ben Salem M, Ben Abdallah Kolsi R, Dhouibi R, Ksouda K, Charfi S, Yaich M, et al. 2017; Protective effects of Cynara scolymus leaves extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. BMC Complement Altern Med. 17:328. DOI: 10.1186/s12906-017-1835-8. PMID: 28629341. PMCID: PMC5477270.
Article
9. Mocelin R, Marcon M, Santo GD, Zanatta L, Sachett A, Schönell AP, et al. 2016; Hypolipidemic and antiatherogenic effects of Cynara scolymus in cholesterol-fed rats. Rev Bras Farmacognosia. 26:233–9. DOI: 10.1016/j.bjp.2015.11.004.
10. Ben Salem M, Affes H, Athmouni K, Ksouda K, Dhouibi R, Sahnoun Z, et al. 2017; Chemicals compositions, antioxidant and anti-inflammatory activity of Cynara scolymus leaves extracts, and analysis of major bioactive polyphenols by HPLC. Evid Based Complement Alternat Med. 2017:4951937. DOI: 10.1155/2017/4951937. PMID: 28539965. PMCID: PMC5429947.
Article
11. Alahmoradi M, Alimohammadi S, Cheraghi H. 2019; Protective effect of Cynara scolymus L. on blood biochemical parameters and liver histopathological changes in phenylhydrazine-induced hemolytic anemia in rats. Pharm Biomed Res. 5:53–62. DOI: 10.18502/pbr.v5i4.2397.
12. Allahmoradi M, Alimohammadi S, Cheraghi H. 2020; Amelioration of lipid peroxidation and antioxidant enzymes status in the serum and erythrocytes of phenylhydrazine-induced anemic male rats: the protective role of artichoke extract (Cynara scolymus L.). Iran J Vet Med. 14:315–28.
13. Zimmermann M. 1983; Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 16:109–10. DOI: 10.1016/0304-3959(83)90201-4. PMID: 6877845.
Article
14. Kavaliers M, Hirst M. 1983; Daily rhythms of analgesia in mice: effects of age and photoperiod. Brain Res. 279:387–93. DOI: 10.1016/0006-8993(83)90216-0. PMID: 6315182.
Article
15. Montiel-Ruiz RM, González-Trujano ME, Déciga-Campos M. 2013; Synergistic interactions between the antinociceptive effect of Rhodiola rosea extract and B vitamins in the mouse formalin test. Phytomedicine. 20:1280–7. DOI: 10.1016/j.phymed.2013.07.006. PMID: 23920277.
Article
16. Zendehdel M, Torabi Z, Hassanpour S. 2015; Antinociceptive mechanisms of Bunium persicum essential oil in the mouse writhing test: role of opioidergic and histaminergic systems. Vet Med. 60:63–70. DOI: 10.17221/7988-VETMED.
Article
17. Oliveira AS, Cercato LM, de Santana Souza MT, Melo AJO, Lima BDS, Duarte MC, et al. 2017; The ethanol extract of Leonurus sibiricus L. induces antioxidant, antinociceptive and topical anti-inflammatory effects. J Ethnopharmacol. 206:144–51. DOI: 10.1016/j.jep.2017.05.029. PMID: 28549861.
Article
18. Zhishen J, Mengcheng T, Jianming W. 1999; The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555–9. DOI: 10.1016/S0308-8146(98)00102-2.
Article
19. Blois MS. 1958; Antioxidant determinations by the use of a stable free radical. Nature. 181:1199–200. DOI: 10.1038/1811199a0.
20. Khalil M, Khalifeh H, Baldini F, Salis A, Damonte G, Daher A, et al. 2019; Antisteatotic and antioxidant activities of Thymbra spicata L. extracts in hepatic and endothelial cells as in vitro models of non-alcoholic fatty liver disease. J Ethnopharmacol. 239:111919. DOI: 10.1016/j.jep.2019.111919. PMID: 31029756.
Article
21. Tamaddonfard E, Hamzeh-Gooshchi N. 2010; Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytother Res. 24:410–3. DOI: 10.1002/ptr.2965. PMID: 19653196.
Article
22. Dubuisson D, Dennis SG. 1977; The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 4:161–74. DOI: 10.1016/0304-3959(77)90130-0. PMID: 564014.
Article
23. Abbott FV, Bonder M. 1997; Options for management of acute pain in the rat. Vet Rec. 140:553–7. DOI: 10.1136/vr.140.21.553. PMID: 9185312.
Article
24. Koster R, Anderson M, De Beer EJ. 1959; Acetic acid for analgesic screening. Fed Proc. 18:412–7.
25. Hishe HZ, Ambech TA, Hiben MG, Fanta BS. 2018; Anti-nociceptive effect of methanol extract of leaves of Senna singueana in mice. J Ethnopharmacol. 217:49–53. DOI: 10.1016/j.jep.2018.02.002. PMID: 29421592.
Article
26. Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. 2018; General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci. 19:2164. DOI: 10.3390/ijms19082164. PMID: 30042373. PMCID: PMC6121522.
Article
27. Hunskaar S, Hole K. 1987; The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 30:103–14. DOI: 10.1016/0304-3959(87)90088-1. PMID: 3614974.
Article
28. Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato AB, Poole S, Ferreira SH, et al. 2000; Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol. 387:111–8. DOI: 10.1016/S0014-2999(99)00790-6. PMID: 10633169.
Article
29. Karbab A, Mokhnache K, Ouhida S, Charef N, Djabi F, Arrar L, et al. 2020; Anti-inflammatory, analgesic activity, and toxicity of Pituranthos scoparius stem extract: an ethnopharmacological study in rat and mouse models. J Ethnopharmacol. 258:112936. DOI: 10.1016/j.jep.2020.112936. PMID: 32376367.
Article
30. Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, et al. 2020; Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules. 25:762. DOI: 10.3390/molecules25030762. PMID: 32050623. PMCID: PMC7037709.
Article
31. Bagdas D, Ozboluk HY, Cinkilic N, Gurun MS. 2014; Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J Med Food. 17:730–2. DOI: 10.1089/jmf.2013.2966. PMID: 24611441.
Article
32. dos Santos MD, Almeida MC, Lopes NP, de Souza GE. 2006; Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull. 29:2236–40. DOI: 10.1248/bpb.29.2236. PMID: 17077520.
Article
33. Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, et al. 2009; Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation. Int Immunopharmacol. 9:1042–8. DOI: 10.1016/j.intimp.2009.04.011. PMID: 19393773.
34. Pinheiro MM, Boylan F, Fernandes PD. 2012; Antinociceptive effect of the Orbignya speciosa Mart. (Babassu) leaves: evidence for the involvement of apigenin. Life Sci. 91:293–300. DOI: 10.1016/j.lfs.2012.06.013. PMID: 22749864.
Article
35. Aziz N, Kim MY, Cho JY. 2018; Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 225:342–58. DOI: 10.1016/j.jep.2018.05.019. PMID: 29801717.
Article
36. Miño J, Acevedo C, Moscatelli V, Ferraro G, Hnatyszyn O. 2002; Antinociceptive effect of the aqueous extract of Balbisia calycina. J Ethnopharmacol. 79:179–82. DOI: 10.1016/S0378-8741(01)00372-5. PMID: 11801379.
Article
37. Filho AW, Filho VC, Olinger L, de Souza MM. 2008; Quercetin: further investigation of its antinociceptive properties and mechanisms of action. Arch Pharm Res. 31:713–21. DOI: 10.1007/s12272-001-1217-2. PMID: 18563352.
Article
38. Toker G, Küpeli E, Memisoğlu M, Yesilada E. 2004; Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea (silver linden). J Ethnopharmacol. 95:393–7. DOI: 10.1016/j.jep.2004.08.008. PMID: 15507365.
Article
39. Yousofvand N, Moloodi B. 2023; An overview of the effect of medicinal herbs on pain. Phytother Res. 37:1057–81. DOI: 10.1002/ptr.7697. PMID: 36585701.
40. Bodnar RJ. 2020; Endogenous opiates and behavior:. Peptides. 132:170348. DOI: 10.1016/j.peptides.2020.170348. PMID: 32574695.
41. Eisenach JC. 1999; Muscarinic-mediated analgesia. Life Sci. 64:549–54. DOI: 10.1016/S0024-3205(98)00600-6. PMID: 10069522.
Article
42. Naser PV, Kuner R. 2018; Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience. 387:135–48. DOI: 10.1016/j.neuroscience.2017.08.049. PMID: 28890048. PMCID: PMC6150928.
Article
43. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW 4th, Pin JP. 2009; Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev. 60:43–56. DOI: 10.1016/j.brainresrev.2008.12.007. PMID: 19146876.
Article
44. Mahdian Dehkordi F, Kaboutari J, Zendehdel M, Javdani M. 2019; The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems. Korean J Pain. 32:160–7. DOI: 10.3344/kjp.2019.32.3.160. PMID: 31257824. PMCID: PMC6615442.
Article
45. Hara K, Haranishi Y, Kataoka K, Takahashi Y, Terada T, Nakamura M, et al. 2014; Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur J Pharmacol. 723:459–64. DOI: 10.1016/j.ejphar.2013.10.046. PMID: 24184666.
46. Obara I, Telezhkin V, Alrashdi I, Chazot PL. 2020; Histamine, histamine receptors, and neuropathic pain relief. Br J Pharmacol. 177:580–99. DOI: 10.1111/bph.14696. PMID: 31046146. PMCID: PMC7012972.
Article
47. Li P, Zhuo M. 2001; Cholinergic, noradrenergic, and serotonergic inhibition of fast synaptic transmission in spinal lumbar dorsal horn of rat. Brain Res Bull. 54:639–47. DOI: 10.1016/S0361-9230(01)00470-1. PMID: 11403990.
48. Martinello K, Sucapane A, Fucile S. 2022; 5-HT3 receptors in rat dorsal root ganglion neurons: Ca2+ entry and modulation of neurotransmitter release. Life (Basel). 12:1178. DOI: 10.3390/life12081178. PMID: 36013357. PMCID: PMC9409985.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr