Clin Exp Vaccine Res.  2018 Jan;7(1):61-69. 10.7774/cevr.2018.7.1.61.

Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs

Affiliations
  • 1Viral Disease Research Division, Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Korea. yangdk@korea.kr

Abstract

PURPOSE
The first aim of this study was to develop a novel inactivated porcine epidemic diarrhea virus (PEDV) vaccine using the recently isolated Korean PEDV QIAP1401 strain and to evaluate its protective efficacy in growing pigs. The second was to determine the optimum adjuvant formulation of the inactivated PEDV vaccine that induces protection against viral challenge.
MATERIALS AND METHODS
To generate high titers of infectious PEDV, the QIAP1401 isolate was passaged in Vero cells. The experimental vaccines were prepared from a binary ethyleneimine-inactivated QIAP1401 strain passaged sequentially 70 times (QIAP1401-p70), formulated with four commercial adjuvants, and administered twice intramuscularly to growing pigs. Challenge studies using a virulent homologous strain of PEDV QIAP1401-p11, which was passaged 11 times after isolation, were performed to assess protection against disease progression and viral shedding during the 15-day observation period. The vaccine-induced antibody responses were measured in serum samples collected at predetermined time points by indirect enzyme-linked immunosorbent assay and virus neutralization test.
RESULTS
The QIAP1401-p70 strain had 42 amino acid (aa) mutations, including a 25 aa deletion, and was selected as the inactivated PEDV vaccine candidate. Although none of the pigs that received the experimental vaccines were completely protected against subsequent viral challenge, they exhibited a significantly higher immune response than did non-vaccinated control pigs. Among the vaccine groups, the highest antibody responses were observed in the pigs that received an oil-based multiphasic water/oil/water (W/O/W) emulsion adjuvanted vaccine, which delayed the onset of clinical symptoms and viral shedding.
CONCLUSION
A novel inactivated PEDV vaccine formulated with a W/O/W emulsion adjuvant was both immunogenic and protective against viral challenge.

Keyword

Porcine epidemic diarrhea virus; Vaccines; Adjuvant; Growing pigs

MeSH Terms

Antibody Formation
Disease Progression
Enzyme-Linked Immunosorbent Assay
Neutralization Tests
Porcine epidemic diarrhea virus*
Swine*
Vaccines*
Vero Cells
Virus Shedding
Vaccines

Figure

  • Fig. 1 (A) Genetic characterization of QIAP1401-p70. A cell-culture-adapted QIAP1401 variant was generated by passaging 70 times using the sequential limit dilution culture method. The whole genome sequence of QIAP1401-p70 was determined by next-generation sequencing technology and compared with the reference sequences of genogroup G2: USA/Iowa303/2014 (KR265827), USA/Minnesota250/2014 (KR265776), and OH1414 (KJ408801). QIAP1401-p70 had 42 aa variations, of which a 25 aa deletion in ORF1a was notable. (B) QIAP1401-p70 emerged after 41 sequential passages.

  • Fig. 2 Clinical score and viral shedding in pigs after challenge with virulent homologous virus (porcine epidemic diarrhea virus [PEDV] QIAP1401-p11). Diarrhea severity was scored (A), and viral shedding in feces was monitored by real-time reverse transcription polymerase chain reaction (B). The letter “a” above the bars indicates a significant difference among the experimental groups (p<0.05, Fisher exact test), whereas “b” indicates no significant difference. NVC, non-vaccinated control.

  • Fig. 3 Serum immune response of pigs in the IMS1313, IMSgel, ISA201, and ISA206 groups. Pigs were vaccinated at 2-week intervals and then challenged with virulent homologous virus (porcine epidemic diarrhea virus [PEDV] OIAP1401-p11). Serum samples collected at 0, 14, 28, and 48 days post-vaccination (dpv) (15 days post-challenge [dpc]) were subjected to enzyme-linked immunosorbent assay (ELISA) (A and B) and virus neutralization (VN) test (C and D) of PEDV-specific IgG and virus-neutralizing antibody titers, respectively. Bars represents the means standard deviation of five independent samples. *, **, and *** indicate significant differences from the non-vaccinated control (NVC) group (p<0.05, p<0.01, and p<0.001, respectively, unpaired Student's t test). Different lower-case letters above the bars indicate significant differences among the groups (p<0.05, Tukey's post hoc test).


Reference

1. Debouck P, Pensaert M. Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. Am J Vet Res. 1980; 41:219–223.
2. Pensaert MB, Yeo SG. Porcine epidemic diarrhea. In : Straw BE, Zimmerman JJ, D'Allaire S, Taylor DJ, editors. Disease of swine. 9th ed. Ames, IW: Blackwell Publishing;2006. p. 367–372.
3. Pijpers A, van Nieuwstadt AP, Terpstra C, Verheijden JH. Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs. Vet Rec. 1993; 132:129–131.
Article
4. Oldham J. Letter to the editor. Pig Farming. 1972; 10:72–73.
Article
5. Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978; 58:243–247.
Article
6. Lee C. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J. 2015; 12:193.
Article
7. Song DS, Oh JS, Kang BK, et al. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res Vet Sci. 2007; 82:134–140.
Article
8. Saif LJ, Pensaert MP, Sestak K, Yeo SG, Jung K. Coronaviruses. In : Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of swine. 10th ed. Ames, IW: Wiley-Blackwell;2012. p. 501–524.
9. Song D, Park B. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes. 2012; 44:167–175.
Article
10. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77:8801–8811.
Article
11. Chang SH, Bae JL, Kang TJ, et al. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells. 2002; 14:295–299.
12. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001; 279:371–374.
Article
13. Sato T, Takeyama N, Katsumata A, Tuchiya K, Kodama T, Kusanagi K. Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes. 2011; 43:72–78.
Article
14. Lee S, Lee C. Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg Infect Dis. 2014; 20:1223–1226.
Article
15. Park BK, Song D. Recent outbreaks and emergence of mutants of porcine epidemic diarrhea viruses (PEDV) in Korea. Jpn J Vet Res. 2016; 64:Suppl 1. S25–S32.
16. Lee DK, Park CK, Kim SH, Lee C. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res. 2010; 149:175–182.
Article
17. Yang DK, Kim HH, Lee SH, Yoon SS, Park JW, Cho IS. Isolation and characterization of a new porcine epidemic diarrhea virus variant that occurred in Korea in 2014. J Vet Sci. 2017; 07. 10. [Epub].
Article
18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673–4680.
Article
19. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42:W320–W324.
Article
20. Song D, Moon H, Kang B. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin Exp Vaccine Res. 2015; 4:166–176.
Article
21. Liu S, Xiao L, Nelson C, Hagedorn CH. A cell culture adapted HCV JFH1 variant that increases viral titers and permits the production of high titer infectious chimeric reporter viruses. PLoS One. 2012; 7:e44965.
Article
22. Daemer RJ, Feinstone SM, Gust ID, Purcell RH. Propagation of human hepatitis A virus in African green monkey kidney cell culture: primary isolation and serial passage. Infect Immun. 1981; 32:388–393.
Article
23. Collin EA, Anbalagan S, Okda F, Batman R, Nelson E, Hause BM. An inactivated vaccine made from a U.S. field isolate of porcine epidemic disease virus is immunogenic in pigs as demonstrated by a dose-titration. BMC Vet Res. 2015; 11:62.
Article
24. Thiel V, Herold J, Schelle B, Siddell SG. Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol. 2001; 75:6676–6681.
Article
25. Xing N, Guan X, An B, et al. Ultrasensitive detection of porcine epidemic diarrhea virus from fecal samples using functionalized nanoparticles. PLoS One. 2016; 11:e0167325.
Article
26. Goede D, Murtaugh MP, Nerem J, Yeske P, Rossow K, Morrison R. Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain. Vet Microbiol. 2015; 176:161–164.
Article
27. Park ME, Lee SY, Kim RH, et al. Enhanced immune responses of foot-and-mouth disease vaccine using new oil/gel adjuvant mixtures in pigs and goats. Vaccine. 2014; 32:5221–5227.
Article
28. Comi G, Freedman MS, Kappos L, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016; 5:97–104.
Article
29. Ibrahim Eel-S, Gamal WM, Hassan AI, Mahdy Sel D, Hegazy AZ, Abdel-Atty MM. Comparative study on the immunopotentiator effect of ISA 201, ISA 61, ISA 50, ISA 206 used in trivalent foot and mouth disease vaccine. Vet World. 2015; 8:1189–1198.
Article
30. Bouguyon E, Goncalves E, Shevtsov A, et al. A new adjuvant combined with inactivated influenza enhances specific CD8 T cell response in mice and decreases symptoms in swine upon challenge. Viral Immunol. 2015; 28:524–531.
Article
31. Aziz-Boaron O, Gleser D, Yadin H, et al. The protective effectiveness of an inactivated bovine ephemeral fever virus vaccine. Vet Microbiol. 2014; 173:1–8.
Article
32. Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001; 19:2666–2672.
Article
33. Jang SI, Lillehoj HS, Lee SH, et al. Mucosal immunity against Eimeria acervulina infection in broiler chickens following oral immunization with profilin in Montanide adjuvants. Exp Parasitol. 2011; 129:36–41.
Article
34. Walders B, Raschke A, Neugebauer M, et al. Blending of a conventional Mycoplasma hyopneumoniae vaccine with a positive marker: tracking of immunised pigs by peptide-specific antibodies raised to the marker component. Res Vet Sci. 2005; 78:135–141.
Article
35. Deville S, Arous JB, Bertrand F, Borisov V, Dupuis L. Efficacy of intranasal and spray delivery of adjuvanted live vaccine against infectious bronchitis virus in experimentally infected poultry. Procedia Vaccinol. 2012; 6:85–92.
Article
Full Text Links
  • CEVR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr