Korean J Physiol Pharmacol.  2014 Aug;18(4):313-320. 10.4196/kjpp.2014.18.4.313.

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

Affiliations
  • 1The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R.China. clxu@nwpu.edu.cn
  • 2Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710072, P.R.China.

Abstract

The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia+vitamin E (250 mg/kg BW*d) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma (IFN-gamma) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and IkappaBalpha, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha (HIF-1alpha and HIF-2alpha), Toll-like receptors (TLR4), P-IkappaBalpha and nuclear factor-kappaB p65(NF-kappaB P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-kappaB signaling pathway.

Keyword

Hypoxia; Intestinal mucosa; Occludin; TLRs; Vitamin E

MeSH Terms

Altitude*
Animals
Anoxia*
Erythropoietin
Heart
Hypoxia-Inducible Factor 1
Ileum
Interferon-gamma
Interleukin-2
Interleukin-4
Intestinal Mucosa
Intestines
Kidney
Liver
Lung
Malondialdehyde
Occludin
Oxidoreductases
Rats*
Rats, Sprague-Dawley
Superoxide Dismutase
Toll-Like Receptors
Vitamin E*
Vitamins*
Erythropoietin
Hypoxia-Inducible Factor 1
Interferon-gamma
Interleukin-2
Interleukin-4
Malondialdehyde
Occludin
Oxidoreductases
Superoxide Dismutase
Toll-Like Receptors
Vitamin E
Vitamins

Figure

  • Fig. 1 Effects of vitamin E and hypoxia on body weight in rats. Control, Control group; HH, High altitude hypoxia group; HV, High altitude hypoxia plus vitamin E group.

  • Fig. 2 Effect of vitamin E on intestinal morphology in rats from different groups. Control, Control group; HH, High altitude hypoxia group; HV, High altitude hypoxia plus vitamin E group (H&E, ×200).

  • Fig. 3 Serum total SOD activity and MDA concentration. ##p<0.01, ###p<0.001 vs Control; *p<0.05, ***p<0.001 vs HH. Values are expressed as mean±S.E.M. (n=10). SOD, superoxide dismutase; MDA, malondialdehyde; Control, Control group; HH, High altitude hypoxia group; HV, High altitude hypoxia plus vitamin E group.

  • Fig. 4 Serum IL-2, IL-4, IFN-γ, EPO and DAO levels, and intestinal S-IgA levels. #p<0.05, ##p<0.01, ###p<0.001 vs Control; *p<0.05, **p<0.01, ***p<0.001 vs HH. Values are expressed as mean±S.E.M. (n=10). IL-2, interleukin-2; IL-4, interleukin-4; IFN-γ, interferon-gamma; DAO, diamine oxidase; EPO, erythropoietin; S-IgA, secretory Immunoglobulin A; Control, Control group; HH, High altitude hypoxia group; HV, High altitude hypoxia plus vitamin E group.

  • Fig. 5 occludin mRNA levels in ileum. Values present means±S.E.M. (n=10). #p<0.05 vs. Control. *p<0.05 vs. HH. Control, Control group; HH, High altitude hypoxia group; HV, High altitude hypoxia plus vitamin E group.

  • Fig. 6 Occludin, HIFs, TLR4 and NF-κB p65 protein expression in ileum. #p<0.01, ##p<0.01, ###p<0.001 vs Control; *p<0.05, ***p<0.001 vs HH. Values are expressed as mean±S.E.M. (n=10). Values present means±S.E.M. (n=10). Control, Control group; HH, High altitude hypoxia group; HV, High altitude hypoxia plus vitamin E group.


Reference

1. Zhou B, Yang DZ, Zhou QQ. The SEM observation of small intestinal mucosa in the rabbits under simulated high altitude hypoxia. Chin J Gastroenterol Hepatol. 2009; 18:751–753.
2. Recavarren-Arce S, Ramirez-Ramos A, Gilman RH, Chinga-Alayo E, Watanabe-Yamamoto J, Rodriguez-Ulloa C, Miyagui J, Passaro DJ, Eza D. Severe gastritis in the Peruvian Andes. Histopathology. 2005; 46:374–379. PMID: 15810948.
Article
3. Shen L. Functional morphology of the gastrointestinal tract. Curr Top Microbiol Immunol. 2009; 337:1–35. PMID: 19812978.
Article
4. Zhou QQ, Yang DZ, Luo YJ, Li SZ, Liu FY, Wang GS. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment. World J Gastroenterol. 2011; 17:1584–1593. PMID: 21472125.
Article
5. Wu WM, Zhang FX. Research advances in plateau hypoxia and gut barrier injury. World Chinese J Digestol. 2009; 17:1432–1436.
Article
6. Tang XL, Xu MJ, Li ZH, Pan Q, Fu JH. Effects of vitamin E on expressions of eight microRNAs in the liver of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2013; 34:1470–1475. PMID: 23542605.
Article
7. Ernst IM, Pallauf K, Bendall JK, Paulsen L, Nikolai S, Huebbe P, Roeder T, Rimbach G. Vitamin E supplementation and lifespan in model organisms. Ageing Res Rev. 2013; 12:365–375. PMID: 23099151.
Article
8. Finno CJ, Valberg SJ. A comparative review of vitamin E and associated equine disorders. J Vet Intern Med. 2012; 26:1251–1266. PMID: 22925200.
Article
9. Vavricka SR, Rogler G. Intestinal absorption and vitamin levels: is a new focus needed? Dig Dis. 2012; 30(Suppl 3):73–80. PMID: 23295695.
Article
10. Bailey DM, Davies B. Acute mountain sickness; prophylactic benefits of antioxidant vitamin supplementation at high altitude. High Alt Med Biol. 2001; 2:21–29. PMID: 11252695.
Article
11. Ilavazhagan G, Bansal A, Prasad D, Thomas P, Sharma SK, Kain AK, Kumar D, Selvamurthy W. Effect of vitamin E supplementation on hypoxia-induced oxidative damage in male albino rats. Aviat Space Environ Med. 2001; 72:899–903. PMID: 11601553.
12. Lee JD, Choi HC, Kang YJ, Kim MS, Lee KY. Effects of Antioxidants on the gamma-radiation damage of the cultured vascular smooth mucle cells of rat aorta. Korean J Physiol Pharmacol. 2007; 11:189–195.
13. Luo H, Guo P, Zhou Q. Role of TLR4/NF-κB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia. PLoS One. 2012; 7:e46291. PMID: 23082119.
Article
14. Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol. 2013; 34:155–161. PMID: 23083727.
Article
15. Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2013; 167:374–379. PMID: 23400224.
Article
16. Rist VT, Weiss E, Eklund M, Mosenthin R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal. 2013; 7:1067–1078. PMID: 23410993.
Article
17. Roche M, Kemp FW, Agrawal A, Attanasio A, Neti PV, Howell RW, Ferraris RP. Marked changes in endogenous antioxidant expression precede vitamin A-, C-, and E-protectable, radiation-induced reductions in small intestinal nutrient transport. Free Radic Biol Med. 2011; 50:55–65. PMID: 20970494.
Article
18. Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mutat Res. 2009; 674:36–44. PMID: 18977455.
Article
19. Seth V, Banerjee BD, Chakravorty AK. Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pestic Biochem Physiol. 2001; 71:133–139.
Article
20. Uzun FG, Demir F, Kalender S, Bas H, Kalender Y. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol. 2010; 48:1714–1720. PMID: 20381572.
Article
21. Najeed Q, Bhaskar N, Masood I, Wadhwa S, Kaur H, Ishaq S. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels-distinguishing parameters between benign and malignant pleural effusions. Free Radic Antioxid. 2012; 2:8–11.
22. Singh M, Thomas P, Shukla D, Tulsawani R, Saxena S, Bansal A. Effect of subchronic hypobaric hypoxia on oxidative stress in rat heart. Appl Biochem Biotechnol. 2013; 169:2405–2419. PMID: 23456277.
Article
23. El-Demerdash FM, Jebur AB, Nasr HM. Oxidative stress and biochemical perturbations induced by insecticides mixture in rat testes. J Environ Sci Health B. 2013; 48:593–599. PMID: 23581693.
Article
24. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007; 448:427–434. PMID: 17653185.
Article
25. Choi WJ, Kim SK, Park HK, Sohn UD, Kim W. Anti-Inflammatory and Anti-Superbacterial Properties of Sulforaphane from Shepherd's Purse. Korean J Physiol Pharmacol. 2014; 18:33–39. PMID: 24634594.
Article
26. Wu QJ, Zhou YM, Wu YN, Zhang LL, Wang T. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet Immunol Immunopathol. 2013; 153:70–76. PMID: 23453767.
Article
27. Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011; 23:598–604. PMID: 21889323.
Article
28. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004; 75:163–189. PMID: 14525967.
29. Hansen CH, Frøkiær H, Christensen AG, Bergström A, Licht TR, Hansen AK, Metzdorff SB. Dietary xylooligosaccharide downregulates IFN-γ and the low-grade inflammatory cytokine IL-1β systemically in mice. J Nutr. 2013; 143:533–540. PMID: 23427328.
Article
30. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007; 132:1359–1374. PMID: 17408640.
Article
31. Muir WI, Husband AJ, Bryden WL. Dietary supplementation with vitamin E modulates avian intestinal immunity. Br J Nutr. 2002; 87:579–585. PMID: 12067428.
Article
32. Elmore BO, Bollinger JA, Dooley DM. Human kidney diamine oxidase: heterologous expression, purification, and characterization. J Biol Inorg Chem. 2002; 7:565–579. PMID: 12072962.
Article
33. Hamada Y, Shinohara Y, Yano M, Yamamoto M, Yoshio M, Satake K, Toda A, Hirai M, Usami M. Effect of the menstrual cycle on serum diamine oxidase levels in healthy women. Clin Biochem. 2013; 46:99–102. PMID: 23099198.
Article
34. Brandtzaeg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol. 2009; 70:505–515. PMID: 19906191.
Article
35. Shang X, Wang P, Liu Y, Zhang Z, Xue Y. Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction. J Mol Neurosci. 2011; 43:364–369. PMID: 20852968.
Article
36. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci. 2009; 1165:62–68. PMID: 19538289.
Article
37. Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol. 2005; 288:C1231–C1241. PMID: 15689410.
Article
38. Basu M, Malhotra AS, Pal K, Prasad R, Kumar R, Prasad BA, Sawhney RC. Erythropoietin levels in lowlanders and high-altitude natives at 3450 m. Aviat Space Environ Med. 2007; 78:963–967. PMID: 17955945.
Article
39. Höpfl G, Ogunshola O, Gassmann M. Hypoxia and high altitude. The molecular response. Adv Exp Med Biol. 2003; 543:89–115. PMID: 14713116.
40. Zamudio S, Wu Y, Ietta F, Rolfo A, Cross A, Wheeler T, Post M, Illsley NP, Caniggia I. Human placental hypoxia-inducible factor-1alpha expression correlates with clinical outcomes in chronic hypoxia in vivo. Am J Pathol. 2007; 170:2171–2179. PMID: 17525282.
41. Fedele AO, Whitelaw ML, Peet DJ. Regulation of gene expression by the hypoxia-inducible factors. Mol Interv. 2002; 2:229–243. PMID: 14993394.
Article
42. Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med. 2011; 50:645–666. PMID: 21185934.
Article
43. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007; 117:1926–1932. PMID: 17557118.
Article
44. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999; 15:551–578. PMID: 10611972.
Article
45. Liu Y, Zhu L, Fatheree NY, Liu X, Pacheco SE, Tatevian N, Rhoads JM. Changes in intestinal Toll-like receptors and cytokines precede histological injury in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009; 297:G442–G450. PMID: 19608731.
Article
46. Weber-Mzell D, Zaupa P, Petnehazy T, Kobayashi H, Schimpl G, Feierl G, Kotanko P, Hollwarth M. The role of nuclear factor-kappa B in bacterial translocation in cholestatic rats. Pediatr Surg Int. 2006; 22:43–49. PMID: 16333628.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr