Korean J Parasitol.  2018 Apr;56(2):135-145. 10.3347/kjp.2018.56.2.135.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

Affiliations
  • 1Institute of Immunology, Taishan Medical College, Tai'an 271-000, Shandong, China.
  • 2Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea. yhalee@cnu.ac.kr, gcha@cnu.ac.kr
  • 3Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524-001, Guangdong, China.

Abstract

Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, CK2β, VEGF, GCL, GST, and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Keyword

Toxoplasma gondii; reactive oxygen species; PI3K/Akt pathway; mTOR; ARPE-19 cell

MeSH Terms

Blood Vessels
Caseins
Epithelial Cells*
Gene Expression*
Glutamate-Cysteine Ligase
Glutathione Transferase
Hydrogen-Ion Concentration
Phosphoprotein Phosphatases
Polymerase Chain Reaction
Reactive Oxygen Species
Retinaldehyde*
Reverse Transcription
RNA, Messenger
Signal Transduction*
Toxoplasma*
Toxoplasmosis
Vascular Endothelial Growth Factor A
Caseins
Glutamate-Cysteine Ligase
Glutathione Transferase
Phosphoprotein Phosphatases
RNA, Messenger
Reactive Oxygen Species
Retinaldehyde
Vascular Endothelial Growth Factor A
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr