Korean J Physiol Pharmacol.  2017 Mar;21(2):205-213. 10.4196/kjpp.2017.21.2.205.

Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity

Affiliations
  • 1Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea. jsnam88@hallym.ac.kr totalhip@hallym.ac.kr

Abstract

Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

Keyword

Apoptosis; Cell cycle arrest; Foxo3a; Quercetin; Triple-negative breast cancer

MeSH Terms

Apoptosis*
Breast Neoplasms
Cell Cycle Checkpoints*
Cell Cycle*
Cell Survival
Fruit
Quercetin*
RNA, Messenger
Tea
Triple Negative Breast Neoplasms*
Vegetables
Quercetin
RNA, Messenger
Tea

Figure

  • Fig. 1 Quercetin reduced viability of MDA-MB-231 breast cancer cells.MDA-MB-231 cells were treated with various concentration of quercetin (2.5~80 µM) for 24 h, 48 h and 72 h. Cell viability was assessed by MTT assay. *p<0.001, significant difference compared to control.

  • Fig. 2 Quercetin induced apoptosis and cell cycle arrest in MDA-MB-231 breast cancer cells.(A) FACS analysis via Annexin V-FITC/PI staining was used to observe the induction of apoptosis in MDA-MB-231 by quercetin treatment. Representative images of the flow cytometry analysis are shown (left). Cells in the lower and upper right quadrant indicate cells with early and late apoptosis, respectively. Statistic graph presents apoptotic levels of quercetin-treated samples and untreated controls at 24 h and 48 h (right). (B) MDA-MB-231 cells were treated with quercetin for 48 h and stained with PI. Cell cycle was analyzed by FACS. M1, M2, M3 and M4 indicate sub G1, G0/G1, S and G2/M phases of cell cycle, respectively (up). The graph shows percentage of cells in each phase (down). (C) RT real-time PCR analysis for expression of FasL mRNA in MDA-MB-231 cells treated with 20 µM quercetin for 12 h, 24 h and 48 h. (D) MDA-MB-231 cells were transiently transfected with p53, p21 or GADD45-luciferase reporter for 24 h prior to treatment of 20 µM quercetin for another 24 h. Cells lysate were collected for Luciferase assay. Relative luciferase activity after normalized with Renilla luciferase reporter is shown as fold change from control. *p<0.05, **p<0.01, ***p<0.001.

  • Fig. 3 Quercetin induced Foxo3a activity.(A) MDA-MB-231 cells were transiently transfected with Foxo3a luciferase reporter for 24 h prior to treatment of 20 µM quercetin for another 24 h. Thereafter, cell lysates were collected for Luciferase assay. The graph shows relative luciferase activity. (B) RT real-time PCR analysis for expression of Foxo3a mRNA in MDA-MB-231 cells treated with 20 µM quercetin for 12 h, 24 h and 48 h. (C) MDA-MB-231 cells were treated with 20 µM quercetin for various time points from 0 to 48 h and total Foxo3a was detected by western blot. β-actin was used as loading control (left). Densitometric quantification of Foxo3a protein levels from western blot analysis (right). Foxo3a levels were compared to basal level at 0 h. (D) After treatment with quercetin for 24 h, cells were fixed and stained for Foxo3a, and DNA was counterstained with DAPI. Representative microcopy images are shown (E) Breast cancer cells were treated with quercetin for 6 h, 12 h and 24 h, and subcellular fractions were isolated and immunoblotted for Foxo3a. Lamin B1 and β-actin were used as loading controls of nucleus and cytoplasm respectively. Western blot analysis image (up) and densitometric quantification of Foxo3a protein expression from western blot analysis (down). *p<0.05, **p<0.01, ***p<0.001.

  • Fig. 4 Quercetin increased Foxo3a activity via activation of JNK signaling pathway.(A) MDA-MB-231 was treated with quercetin and levels of p-ERK, p-38, JNK, p-JNK and Foxo3a at 0~8 h were detected by western blot (left). Densitometric quantification of protein expression from western blot analysis (right). The protein levels were compared to basal level at 0 h (B) MDA-MB-231 cells were pre-treated for 30 mins with SP600125 prior to treatment of quercetin for 3 h. Samples were collected and levels of Foxo3a, JNK and p-JNK were determined by western blot. β-actin was used as loading control. (C) MDA-MB-231 cells were transiently transfected with Foxo3a luciferase reporter for 24 h prior to pre-treatment of SP600125 for 1 h and treatment of 20 µM quercetin for another 24 h. Luciferase assay was used to measure activity of Foxo3a. Relative luciferase activity after normalized with Renilla luciferase reporter is shown as fold change from control. *p<0.05, **p<0.01, ***p<0.001.

  • Fig. 5 Quercetin regulates apoptosis and cell cycle arrest through the JNK-Foxo3a axis.(A) Cancer cells were transfected with Foxo3a siRNA or scramble siRNA for control prior to treatment with 20 µM quercetin for 48 h. FACS analysis was applied to measure population of apoptotic cells. Representative images of the flow cytometry analysis are shown (left). Statistic graph presents apoptotic levels (right). (B) Cancer cells were transfected with Foxo3a siRNA or scramble siRNA for control prior to treatment with 20 µM quercetin for 48 h. Then, cells were collected and stained with PI, cell cycle was analyzed by FACS. M1, M2, M3, M4 indicate sub G1, G0/G1, S and G2/M phase, respectively (up). The graph shows the percentage of cells in each phase (down). (C) MDA-MB-231 cells were transiently co-transfected with Foxo3a shRNA and a plasmid containing p53, p21 or GADD45 luciferase reporter for 24 h prior to treatment of quercetin. Luciferase activity was measured after 24 h. (D) MDA-MB-231 cells were transfected with p53, p21 or GADD45 luciferase reporter for 24 h prior to pre-treatment of 1 µM SP600125 and treatment of 20 µM quercetin. Luciferase activity was measured after 24 h. *p<0.05, **p<0.01, ***p<0.001.


Cited by  1 articles

Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway
Seul Gi Kim, Jin Young Sung, Jae-Ryong Kim, Hyoung Chul Choi
Korean J Physiol Pharmacol. 2020;24(1):69-79.    doi: 10.4196/kjpp.2020.24.1.69.


Reference

1. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005; 23:7350–7360. PMID: 16145060.
Article
2. Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012; 38:698–707. PMID: 22178455.
Article
3. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Rakha EA, Richardson AL, Schmitt FC, Tan PH, Tse GM, Weigelt B, Ellis IO, Reis-Filho JS. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011; 24:157–167. PMID: 21076464.
Article
4. Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007; 8:235–244. PMID: 17329194.
Article
5. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008; 26:2568–2581. PMID: 18487574.
Article
6. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007; 13:4429–4434. PMID: 17671126.
Article
7. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010; 28:3271–3277. PMID: 20498394.
Article
8. Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol. 1993; 45:13–19. PMID: 8424806.
Article
9. Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 2001; 56:683–687. PMID: 11680812.
Article
10. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010; 29:405–434. PMID: 20737283.
Article
11. van Rijn J, van den Berg J. Flavonoids as enhancers of x-ray-induced cell damage in hepatoma cells. Clin Cancer Res. 1997; 3:1775–1779. PMID: 9815563.
12. Hofmann J, Fiebig HH, Winterhalter BR, Berger DP, Grunicke H. Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int J Cancer. 1990; 45:536–539. PMID: 2155185.
Article
13. Sharmila G, Bhat FA, Arunkumar R, Elumalai P, Raja Singh P, Senthilkumar K, Arunakaran J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr. 2014; 33:718–726. PMID: 24080313.
14. Kim GT, Lee SH, Kim JI, Kim YM. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med. 2014; 33:863–869. PMID: 24535669.
Article
15. Maurya AK, Vinayak M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep. 2015; 42:1419–1429. PMID: 26311153.
Article
16. Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol. 2010; 649:84–91. PMID: 20858478.
Article
17. Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif. 2013; 46:153–163. PMID: 23510470.
18. Jeong JH, An JY, Kwon YT, Li LY, Lee YJ. Quercetin-induced ubiquitination and down-regulation of Her-2/neu. J Cell Biochem. 2008; 105:585–595. PMID: 18655187.
Article
19. Huang CY, Chan CY, Chou IT, Lien CH, Hung HC, Lee MF. Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem. 2013; 24:1596–1603. PMID: 23618529.
Article
20. Gulati N, Laudet B, Zohrabian VM, Murali R, Jhanwar-Uniyal M. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006; 26:1177–1181. PMID: 16619521.
21. Sun ZJ, Chen G, Hu X, Zhang W, Liu Y, Zhu LX, Zhou Q, Zhao YF. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis. 2010; 15:850–863. PMID: 20386985.
22. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 2004; 117:225–237. PMID: 15084260.
23. Zou Y, Tsai WB, Cheng CJ, Hsu C, Chung YM, Li PC, Lin SH, Hu MC. Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Res. 2008; 10:R21. PMID: 18312651.
Article
24. Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer. 2015; 15:958. PMID: 26675309.
Article
25. Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ, Burgering BM, Coombes RC, Lam EW. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. 2006; 66:212–220. PMID: 16397234.
Article
26. Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC, Lam EW. The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther. 2007; 6:3169–3179. PMID: 18089711.
Article
27. Sunters A, Fernández de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA, Coffer PJ, Medema RH, Coombes RC, Lam EW. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003; 278:49795–49805. PMID: 14527951.
Article
28. Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, Wu M, Zhan Q. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002; 21:8696–8704. PMID: 12483522.
Article
29. Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, Tron VA. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol. 2002; 119:22–26. PMID: 12164919.
Article
30. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009; 9:400–414. PMID: 19440234.
Article
31. Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008; 27:2312–2319. PMID: 18391973.
Article
32. Schmidt M, Fernandez de, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002; 22:7842–7852. PMID: 12391153.
Article
33. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, Keely PJ, Longmore GD. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013; 15:677–687. PMID: 23644467.
Article
34. Ishikawa Y, Kitamura M. Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int. 2000; 58:1078–1087. PMID: 10972672.
Article
35. Hu XT, Ding C, Zhou N, Xu C. Quercetin protects gastric epithelial cell from oxidative damage in vitro and in vivo. Eur J Pharmacol. 2015; 754:115–124. PMID: 25701726.
Article
36. Yang T, Kong B, Gu JW, Kuang YQ, Cheng L, Yang WT, Xia X, Shu HF. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell Mol Neurobiol. 2014; 34:797–804. PMID: 24846663.
Article
37. Ferraresi R, Troiano L, Roat E, Lugli E, Nemes E, Nasi M, Pinti M, Fernandez MI, Cooper EL, Cossarizza A. Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res. 2005; 39:1249–1258. PMID: 16298752.
Article
38. Lee YK, Hwang JT, Kwon DY, Surh YJ, Park OJ. Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway. Cancer Lett. 2010; 292:228–236. PMID: 20083342.
39. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016; 6:24049. PMID: 27068577.
Article
40. Youn H, Jeong JC, Jeong YS, Kim EJ, Um SJ. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013; 36:944–951. PMID: 23727915.
Article
41. Bach A, Bender-Sigel J, Schrenk D, Flügel D, Kietzmann T. The antioxidant quercetin inhibits cellular proliferation via HIF-1-dependent induction of p21WAF. Antioxid Redox Signal. 2010; 13:437–448. PMID: 19958256.
42. Mu C, Jia P, Yan Z, Liu X, Li X, Liu H. Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods Find Exp Clin Pharmacol. 2007; 29:179–183. PMID: 17520098.
43. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem. 2009; 106:73–82. PMID: 19009557.
Article
44. Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, Tsou MF, Wood WG, Kuo SJ, Chen DR. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol. 2009; 28:493–503. PMID: 19755441.
Article
45. Tao SF, He HF, Chen Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol Cell Biochem. 2015; 402:93–100. PMID: 25596948.
Article
46. Seo HS, Ju JH, Jang K, Shin I. Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor α-negative breast cells. Nutr Res. 2011; 31:139–146. PMID: 21419318.
Article
47. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004; 117:421–426. PMID: 15137936.
Article
48. Yang JY, Hung MC. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res. 2009; 15:752–757. PMID: 19188143.
Article
49. Sunayama J, Tsuruta F, Masuyama N, Gotoh Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol. 2005; 170:295–304. PMID: 16009721.
Article
50. Lam EW, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans. 2006; 34:722–726. PMID: 17052182.
Article
51. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007; 120:2479–2487. PMID: 17646672.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr