Lab Anim Res.  2016 Jun;32(2):91-98. 10.5625/lar.2016.32.2.91.

Anti-inflammatory effect of egg white-chalcanthite and purple bamboo salts mixture on arthritis induced by monosodium iodoacetate in Sprague-Dawley rats

Affiliations
  • 1Department of Bio Applied Toxicology, Graduate school of Hoseo University, Asan, Korea. bshan@hoseo.edu
  • 2Hoseo Toxicological Research Center, Hoseo University, Asan, Korea.
  • 3Insan Bamboo Salt Inc. and Insan Korean Medical Cancer Clinic, Hamyang, Korea.

Abstract

The aim of this study is to investigate the potential of anti-osteoarthritis effects on egg white-chalcanthite (EC), purple bamboo salts (PBS), and a mixture of EC and PBS (EC+PBS). EC is a mixture of egg white and pulverized chalcanthite. PBS has been widely used as one of functional foods in Korea and shows unique features compared with common salt. Osteoarthritis was induced by intra-articular injection of monosodium iodoacetate (MIA, 4mg/kg bw) in Sprague-Dawley (SD) rats. Test substances were administered once daily for 6 weeks at doses of 10 mg EC, EC+100 mg PBS, EC+200 mg PBS before and after MIA injection. Each substance was assessed by blood chemistry parameters, and by serum cytokines including IL-1β and IL-6, and nitric oxide (NO) and prostaglandin-E2 (PGE2). Structural changes of articular cartilage were also evaluated by histopathological examination. As a result, body weight and blood chemistry parameter were not different in all experimental groups. EC+PBS mixture reduced the production of PGE2, NO, IL-1β, and IL-6. In histological grade of osteoarthritis, EC+PBS mixture had a tendency to ameliorate damage of articular cartilage induced by MIA in a dose-dependent manner. In conclusion, EC+PBS mixture was demonstrated to have a potential for anti-inflammatory effect against osteoarthritis induced by MIA in a dose-dependent manner.

Keyword

arthritis; purple bamboo salts (PBS); egg white-chalcanthite (EC); monosodium iodoacetate (MIA)

MeSH Terms

Animals
Arthritis*
Body Weight
Cartilage, Articular
Chemistry
Cytokines
Dinoprostone
Egg White
Functional Food
Injections, Intra-Articular
Interleukin-6
Korea
Nitric Oxide
Osteoarthritis
Ovum*
Rats
Rats, Sprague-Dawley*
Salts*
Cytokines
Dinoprostone
Interleukin-6
Nitric Oxide
Salts

Figure

  • Figure 1 Line diagrams showing experimental design for NC, PC, EC 10, PBS 200, EC+PBS 100 and 200 treatment group in MIA treated rats. MIA: monosodium iodoacetate 4 mg/kg b.w. intra-articular injection, NC: normal control, PC: MIA alone, EC 10: egg white-chalcanthite 10 mg/kg b.w, PBS 200: purple bamboo salt 200 mg/kg b.w, EC+PBS 100: EC+PBS 100 mg/kg b.w, EC+PBS 200: EC+PBS 200 mg/kg b.w..

  • Figure 2 Effect of EC, PBS and EC+PBS on the body weight in rats. The data were expressed as mean±SD. NC: normal control, PC: MIA alone, EC 10: egg white-chalcanthite 10 mg/kg b.w, PBS 200: purple bamboo salt 200 mg/kg b.w, EC+PBS 100: EC+PBS 100 mg/kg b.w, EC+PBS 200: EC+PBS 200 mg/kg b.w.

  • Figure 3 Effects of EC, PBS and EC+PBS on concentration of nitric oxide (A) and prostaglandin E2 (B) The data were expressed as mean ± SD. The data were expressed as mean± SD. NC: Normal control, PC: MIA alone, EC 10: Egg white-chalcanthite 10 mg/kg b.w, PBS 200: Purple bamboo salt 200 mg/kg b.w, EC-PBS 100: EC+PBS 100 mg/kg b.w, EC+PBS 200: EC+PBS 200 mg/kg b.w. #, significantly different from NC at P<0.05.; *, significantly different from PC at P<0.05.

  • Figure 4 Effects of EC, PBS and EC+PBS on concentration of IL-1β (A) and IL-6 (B). The results were expressed as mean ± SD. The data were expressed as mean ± SD. NC: normal control, PC:MIA alone, EC 10: egg white-chalcanthite 10 mg/kg b.w, PBS 200: purple bamboo salt 200 mg/kg b.w, EC+PBS 100: EC+PBS 100 mg/kg b.w, EC+PBS 200: EC+PBS 200 mg/kg b.w. #, significantly different from NC at P<0.05; *, significantly different from PC at P<0.05.

  • Figure 5 Histopathological findings of articular structure (A) damaging articular structure (surface irregularity and surface cleft, arrows) of rat treated with MIA alone, H&E stain (B) damaging articular structure (matrix loss of cartilage, arrows) of rat treated with MIA alone, Safranin O stain (C) reparing articular structure of rat treated with MIA+EC+200 mg PBS, H&E stain (D) recovering articular structure of rat treated with MIA+EC+200 mg PBS, Safranin O stain.


Reference

1. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Monoiodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003; 31(6):619–624. PMID: 14585729.
Article
2. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, Schrier DJ, Kilgore KS. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage. 2003; 11(11):821–830. PMID: 14609535.
Article
3. Studer R, Jaffurs D, Stefanovic-Racic M, Robbins PD, Evans CH. Nitric oxide in osteoarthritis. Osteoarthritis Cartilage. 1999; 7(4):377–379. PMID: 10419772.
Article
4. Herrington C, Hall PA. Molecular and cellular themes in inflammation and immunology. J Pathol. 2008; 214(2):123–125. PMID: 18161749.
Article
5. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, Schrier DJ, Kilgore KS. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage. 2003; 11(11):821–830. PMID: 14609535.
Article
6. Woo YJ, Joo YB, Jung YO, Ju JH, Cho ML, Oh HJ, Jhun JY, Park MK, Park JS, Kang CM, Sung MS, Park SH, Kim HY, Min JK. Grape seed proanthocyanidin extract ameliorates monosodium iodoacetate-induced osteoarthritis. Exp Mol Med. 2011; 43(10):561–570. PMID: 21795829.
Article
7. Im HJ, Kim JS, Li X, Kotwal N, Sumner DR, van Wijnen AJ, Davis FJ, Yan D, Levine B, Henry JL, Desevre J, Kroin JS. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model. Arthritis Rheum. 2010; 62(10):2995–3005. PMID: 20556813.
Article
8. Kim HY, Lee ES, Jeong JY, Choi JH, Choi YS, Han DJ, Lee MA, Kim SY, Kim CJ. Effect of bamboo salt on the physicochemical properties of meat emulsion systems. Meat Sci. 2010; 86(4):960–965. PMID: 20826069.
Article
9. Zhao X, Jung OS, Park KY. Alkaline and antioxidant effects of bamboo salt. J Korean Soc Food Sci Nutr. 2012; 41(9):1301–1304.
Article
10. Shin HY, Lee EH, Kim CY, Shin TY, Kim SD, Song YS, Lee KN, Hong SH, Kim HM. Anti-inflammatory activity of Korean folk medicine purple bamboo salt. Immunopharmacol Immunotoxicol. 2003; 25(3):377–384. PMID: 19180800.
Article
11. Zhao X, Song JL, Kil JH, Park KY. Bamboo salt attenuates CCl4-induced hepatic damage in Sprague-Dawley rats. Nutr Res Pract. 2013; 7(4):273–280. PMID: 23964314.
Article
12. Zhao X, Deng X, Park KY, Qiu L, Pang L. Purple bamboo salt has anticancer activity in TCA8113 cells in vitro and preventive effects on buccal mucosa cancer in mice in vivo. Exp Ther Med. 2013; 5(2):549–554. PMID: 23403521.
Article
13. Kim SH, Kang SY, Jung KK, Kim TG, Han HM, Rheu HM, Moon A. Characterization and anti-gastric ulcer activity of bamboo salt. J Food Hyg Saf. 1998; 13:252–257.
14. Jhun HJ, Ahn K, Lee SC. Estimation of the prevalence of osteoarthritis in Korean adults based on the data from the fourth Korea national health and nutrition examination survey. Anesth Pain Med. 2010; 5(3):201–206.
15. Henrotin Y, Kurz B. Antioxidant to treat osteoarthritis: dream or reality? Curr Drug Targets. 2007; 8(2):347–357. PMID: 17305512.
Article
16. Dunham J, Hoedt-Schmidt S, Kalbhen DA. Prolonged effect of iodoacetate on articular cartilage and its modification by an anti-rheumatic drug. Int J Exp Pathol. 1993; 74(3):283–289. PMID: 8334078.
17. Choi EA, Park HY, Yoo HS, Choi YH. Anti-inflammatory effects of egg white combined with chalcanthite in lipopolysaccharide-stimulated BV2 microglia through the inhibition of NF-êB, MAPK and PI3K/Akt signaling pathways. Int J Mol Med. 2013; 31(1):154–162. PMID: 23128312.
Article
18. Janusz MJ, Hookfin EB, Heitmeyer SA, Woessner JF, Freemont AJ, Hoyland JA, Brown KK, Hsieh LC, Almstead NG, De B, Natchus MG, Pikul S, Taiwo YO. Moderation of iodoacetateinduced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage. 2001; 9(8):751–760. PMID: 11795995.
Article
19. Choi EA, Kim KH, Yoo BC, Yoo HS. Induction of apoptotic cell death by egg white combined-chalcanthite on NCI-H460 human lung cancer cells. J Korean Pharmacopuncture Inst. 2009; 12(3):49–59.
Article
20. Gencosmanoglu BE, Eryavuz M, Dervisoglu S. Effects of some nonsteroidal anti-inflammatory drugs on articular cartilage of rats in an experimental model of osteoarthritis. Res Exp Med (Berl). 2001; 200(3):215–226. PMID: 11426673.
21. Natchus MG, Bookland RG, De B, Almstead NG, Pikul S, Janusz MJ, Heitmeyer SA, Hookfin EB, Hsieh LC, Dowty ME, Dietsch CR, Patel VS, Garver SM, Gu F, Pokross ME, Mieling GE, Baker TR, Foltz DJ, Peng SX, Bornes DM, Strojnowski MJ, Taiwo YO. Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. J Med Chem. 2000; 43(26):4948–4963. PMID: 11150165.
Article
22. Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971; 53(3):523–537. PMID: 5580011.
23. Thomas CM, Fuller CJ, Whittles CE, Sharif M. Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthritis Cartilage. 2007; 15(1):27–34. PMID: 16859932.
Article
24. Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res. 2004; (427 Suppl):S27–S36. PMID: 15480070.
Article
25. Zamli Z, Sharif M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis. 2011; 14(2):159–166. PMID: 21518315.
Article
26. Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis. 2008; 67(Suppl 3):iii75–iii82. PMID: 19022820.
Article
27. Carames B, Lopez-Armada MJ, Cillero-Pastor B, Lires-Dean M, Vaamonde C, Galdo F, Blanco FJ. Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. Osteoarthritis Cartilage. 2008; 16(6):715–722. PMID: 18054255.
28. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009; 11(3):227. PMID: 19519925.
Article
29. Pelletier JP, DiBattista JA, Roughley P, McCollum R, Martel-Pelletier J. Cytokines and inflammation in cartilage degradation. Rheum Dis Clin North Am. 1993; 19(3):545–568. PMID: 8210574.
Article
30. Guerne PA, Sublet A, Lotz M. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol. 1994; 158(3):476–484. PMID: 8126071.
Article
31. Hashimoto J, Yoshikawa H, Takaoka K, Shimizu N, Masuhara K, Tsuda T, Miyamoto S, Ono K. Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Bone. 1989; 10(6):453–457. PMID: 2624827.
Article
32. Webb GR, Westacott CI, Elson CJ. Chondrocyte tumor necrosis factor receptors and focal loss of cartilage in osteoarthritis. Osteoarthritis Cartilage. 1997; 5(6):427–437. PMID: 9536291.
Article
33. Nam SY, Oh HA, Choi Y, Park KY, Kim HM, Jeong HJ. Inhibition of IL-32 signaling by bamboo salt decreases proinflammatory responses in cellular models of allergic rhinitis. J Med Food. 2014; 17(9):939–948. PMID: 25089715.
Article
34. Carames B, Lopez-Armada MJ, Cillero-Pastor B, Lires-Dean M, Vaamonde C, Galdo F, Blanco FJ. Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. Osteoarthritis Cartilage. 2008; 16(6):715–722. PMID: 18054255.
35. Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, Simmons RL, Evans CH. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 1991; 147(11):3915–3920. PMID: 1658153.
36. Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, Stuchin SA, Patel IR, Abramson SB. Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. J Clin Invest. 1997; 99(6):1231–1237. PMID: 9077531.
Article
37. Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone. 2016; 85:81–90. PMID: 26812612.
Article
38. Notoya K, Jovanovic DV, Reboul P, Martel-Pelletier J, Mineau F, Pelletier JP. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol. 2000; 165(6):3402–3410. PMID: 10975859.
Article
39. Barve RA, Minnerly JC, Weiss DJ, Meyer DM, Aguiar DJ, Sullivan PM, Weinrich SL, Head RD. Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental osteoarthritis in rats: relevance to human disease. Osteoarthritis Cartilage. 2007; 15(10):1190–1198. PMID: 17500014.
Article
40. Lee SW, Song YS, Shin SH, Kim KT, Park YC, Park BS, Yun I, Kim K, Lee SY, Chung WT, Lee HJ, Yoo YH. Cilostazol protects rat chondrocytes against nitric oxide-induced apoptosis in vitro and prevents cartilage destruction in a rat model of osteoarthritis. Arthritis Rheum. 2008; 58(3):790–800. PMID: 18311796.
Article
Full Text Links
  • LAR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr