1). Kaltschmidt C., Kaltschmidt B., Neumann H., Wekerle H., Baeuerle PA. Constitutive NF-kappa B activity in neurons. Mol Cell Biol. 1994. 14:3981–92.
Article
2). Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev. 2001. 7:56–64.
Article
3). Vannucci SJ., Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol. 2004. 207:3149–54.
Article
4). Lamigeon C., Bellier JP., Sacchettoni S., Rujano M., Jacque-mont B. Enhanced neuronal protection from oxidative stress by coculture with glutamic acid decarboxylase-expressing astrocytes. J Neurochem. 2001. 77:598–606.
Article
5). Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991. 14:453–501.
Article
6). Lalier L., Cartron PF., Juin P., Nedelkina S., Mano S., Bechinger B, et al. Bax activation and mitochondrial insertion during apoptosis. Apoptosis. 2007. 12:887–96.
Article
7). Oltvai Z. N, Milliman CL, Korsmeyer SJ. Bcl-2 hetero-dimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993. 74:609–19.
8). Takada N., Yamaguchi H., Shida K., Terajima D., Satou Y., Kasuya A, et al. The cell death machinery controlled by Bax and Bcl-XL is evolutionarily conserved in Ciona intestinalis. Apoptosis. 2005. 10:1211–20.
Article
9). Han BH., D'Costa A., Back SA., Parsadanian M., Patel S., Shah AR, et al. BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis. 2000. 7:38–53.
10). Adamec E., Yang F., Cole GM., Nixon RA. Multiple-label immunocytochemistry for the evaluation of nature of cell death in experimental models of neurodegeneration. Brain Res Brain Res Protoc. 2001. 7:193–202.
Article
11). Cheng Y., Deshmukh M., D'Costa A., Demaro JA., Gidday J., Shah A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxi-cischemic brain injury. J Clin Invest. 1998. 101:1992–9.
Article
12). Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006. 361:1545–64.
Article
13). Tapia-Arancibia L., Rage F., Givalois L., Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol. 2004. 25:77–107.
14). Lewin GR., Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996. 19:289–317.
Article
15). Schäbitz WR., Sommer C., Zoder W., Kiessling M., Schwaninger M., Schwab S. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000. 31:2212–7.
Article
16). Cheng Y., Gidday JM., Yan Q., Shah AR., Holtzman DM. Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol. 1997. 41:521–9.
Article
17). Liu YJ., Zhuang J., Zhu HY., Shen YX., Tan ZL., Zhou JN. Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. J Pineal Res. 2007. 43:232–8.
Article
18). Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci. 1997. 71:143–55.
Article
19). Callahan DJ., Engle MJ., Volpe JJ. Hypoxic injury to developing glial cells: protective effect of high glucose. Pediatr Res. 1990. 27:186–90.
Article
20). Hong SS., Gibney GT., Esquilin M., Yu J., Xia Y. Effect of protein kinases on lactate dehydrogenase activity in cortical neurons during hypoxia. Brain Res. 2004. 1009:195–202.
Article
21). Arancibia S., Silhol M., Moulière F., Meffre J., Höllinger I., Maurice T, et al. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis. 2008. 31:316–26.
Article
22). Simonian NA., Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 1996. 36:83–106.
Article
23). Dirnagl U., Iadecola C., Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999. 22:391–7.
Article
24). Sauvageot CM., Stiles CD. Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol. 2002. 12:244–9.
Article
25). Garcia CM., Darland DC., Massingham LJ., D'Amore PA. Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res. 2004. 152:25–38.
26). Chen Y., Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003. 23:137–49.
Article
27). Nedergaard M., Ransom B., Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003. 26:523–30.
Article
28). Honig LS., Rosenberg RN. Apoptosis and neurologic disease. Am J Med. 2000. 108:317–30.
Article
29). Olney JW., Tenkova T., Dikranian K., Muglia LJ., Jermako-wicz WJ., D'Sa C, et al. Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol Dis. 2002. 9:205–19.
Article
30). Merry DE., Veis DJ., Hickey WF., Korsmeyer SJ. bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development. 1994. 120:301–11.
Article
31). Vekrellis K., McCarthy MJ., Watson A., Whitfield J., Rubin LL., Ham J. Bax promotes neuronal cell death and is down-regulated during the development of the nervous system. Development. 1997. 124:1239–49.
Article
32). Parikh N., Koshy C., Dhayabaran V., Perumalsamy LR., Sowdhamini R., Sarin A. The N-terminus and alpha-5, alpha-6 helices of the pro-apoptotic protein Bax, modulate functional interactions with the anti-apoptotic protein Bcl-xL. BMC Cell Biol. 2007. 8:16.
Article
33). Chen J., Graham SH., Nakayama M., Zhu RL., Jin K., Stetler RA, et al. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab. 1997. 17:2–10.
Article
34). Hara A., Iwai T., Niwa M., Uematsu T., Yoshimi N., Tanaka T, et al. Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res. 1996. 711:249–53.
Article
35). Almli CR., Levy TJ., Han BH., Shah AR., Gidday JM., Holtzman DM. BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol. 2000. 166:99–114.
Article
36). Koh JY., Gwag BJ., Lobner D., Choi DW. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science. 1995. 268:573–5.
Article
37). Miyata K., Omori N., Uchino H., Yzmafuchi T., Isshiki A., Shibasaki F. Involvement of the brain-derived neurotrophic factor/TrkB pathway in neuroprotective effect of cyclosporine A in forebrain ischemia. Neuroscience. 2001. 105:571–8.
38). Barnabé-Heider F., Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci. 2003. 23:5149–60.
Article
39). Sochocka E., Juurlink BH., Code WE., Hertz V., Peng L., Hertz L. Cell death in primary cultures of mouse neurons and astrocytes during exposure to and 'recovery' from hypoxia, substrate deprivation and simulated ischemia. Brain Res. 1994. 28:21–8.
Article
40). Al Ahmad A., Gassmann M., Ogunshola OO. Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol. 2009. 218:612–22.
Article