Int J Stem Cells.  2016 May;9(1):36-43. 10.15283/ijsc.2016.9.1.36.

Epigenetic Regulation of Hematopoietic Stem Cells

Affiliations
  • 1Division of Stem Cell Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India. gugdutta@rediffmail.com

Abstract

Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an "individual" gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia.

Keyword

Epigenetics; Self-renewal; Regulation; Hematopoietic stem cells

MeSH Terms

Bone Marrow
Chromatin
DNA Methylation
Epigenomics*
Gene Expression
Genome
Hematopoiesis
Hematopoietic Stem Cells*
Histones
Homeostasis
Leukemia
Stem Cells
Transcription Factors
Chromatin
Histones
Transcription Factors

Figure

  • Fig. 1 Schematic of nucleosome structure. Nucleosomes are the smallest structural unit of chromatin. Nucleosome consists of two copies of each core histone (H2A, H2B, H3 and H4) and ~150 bp DNA. The N-terminal tail of each histone is extruded from the nucleosome. Amino acids in histone tails can be modified by numerous enzymes bringing acetylation, methylation, phosphorylation, ubiquitination and other substitutions, creating a complex ‘bar’ code, which may influence chromatin structure by affecting histone-histone and histone-DNA interactions. Post-translational modifications of histones regulate transcription of genes important for self-renewal and differentiation.

  • Fig. 2 Histone modifications: Active genes: Open chromatin structure of transcriptionally active gene with loosely spaced nucleosomes. Acetylation of lysine neutralizes the positive charge, reducing affinity between histone and DNA, which functions as platforms for the recruitment of transcription factors or chromatin remodelers, thus histone modifications directly effects nucleosomal architecture. H3K4me3 is enriched around transcription start sites. H3K4me1 is enriched around enhancers and downstream. H3K27ac is enriched around active enhancers and transcription start sites. Bivalent genes: In undifferentiated stem cells, both H3K4me3 and H3K27me3 (active and inactive marks, respectively) are enriched around transcription start sites on many genes. The multiple coexisting histone modifications are associated with activation and repression. Inactive genes: H3K9me3 is broadly distributed on inactive regions. H3K27me3 and H3K9me3 are usually not colocalized. Proteins associated for transcription silencing are DNMT- DNA methyl-transferase, MBD-Methyl-binding domain, HP-1-Heterochromatin protein and CAF-1-Chromatin assembly factor1.


Cited by  2 articles

Hematopoietic Stem Cells and Their Roles in Tissue Regeneration
Ji Yoon Lee, Seok-Ho Hong
Int J Stem Cells. 2019;13(1):1-12.    doi: 10.15283/ijsc19127.

MiR-9 Controls Chemotactic Activity of Cord Blood CD34+ Cells by Repressing CXCR4 Expression
Tae Won Ha, Hyun Soo Kang, Tae-Hee Kim, Ji Hyun Kwon, Hyun Kyu Kim, Aeli Ryu, Hyeji Jeon, Jaeseok Han, Hal E. Broxmeyer, Yongsung Hwang, Yun Kyung Lee, Man Ryul Lee
Int J Stem Cells. 2018;11(2):187-195.    doi: 10.15283/ijsc18057.


Reference

References

1. Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev. 2006; 15:755–778. DOI: 10.1089/scd.2006.15.755.
Article
2. Zhou Y, Kim J, Yuan X, Braun T. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res. 2011; 109:1067–1081. DOI: 10.1161/CIRCRESAHA.111.243709. PMID: 21998298.
3. Bottardi S, Ghiam AF, Bergeron F, Milot E. Lineage-specific transcription factors in multipotent hematopoietic progenitors: a little bit goes a long way. Cell Cycle. 2007; 6:1035–1039. DOI: 10.4161/cc.6.9.4208. PMID: 17457053.
Article
4. Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007; 8:307–318. DOI: 10.1038/nrm2143. PMID: 17342184.
Article
5. Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene. 2007; 26:6697–6714. DOI: 10.1038/sj.onc.1210755. PMID: 17934479.
Article
6. Cedar H, Bergman Y. Linking DNA methylation and his-tone modification: patterns and paradigms. Nat Rev Genet. 2009; 10:295–304. DOI: 10.1038/nrg2540. PMID: 19308066.
Article
7. Branco MR, Ficz G, Reik W. Uncovering the role of 5-hy-droxymethylcytosine in the epigenome. Nat Rev Genet. 2011; 13:7–13. PMID: 22083101.
Article
8. Calvanese V, Fernández AF, Urdinguio RG, Suárez-Alvarez B, Mangas C, Pérez-García V, Bueno C, Montes R, Ramos-Mejía V, Martínez-Camblor P, Ferrero C, Assenov Y, Bock C, Menendez P, Carrera AC, Lopez-Larrea C, Fraga MF. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 2012; 40:116–131. DOI: 10.1093/nar/gkr685. PMCID: 3245917.
Article
9. Trowbridge JJ, Orkin SH. Dnmt3a silences hematopoietic stem cell self-renewal. Nat Genet. 2011; 44:13–14. DOI: 10.1038/ng.1043. PMID: 22200773.
Article
10. Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, Mallaney C, Celik H, Yang L, Xia Z, Cullen S, Berg J, Zheng Y, Darlington GJ, Li W, Goodell MA. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell. 2014; 15:350–364. DOI: 10.1016/j.stem.2014.06.018. PMID: 25130491. PMCID: 4163922.
Article
11. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 2009; 5:442–449. DOI: 10.1016/j.stem.2009.08.016. PMID: 19796624. PMCID: 2767228.
Article
12. Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014; 1839:1362–1372. DOI: 10.1016/j.bbagrm.2014.02.007. PMID: 24560929. PMCID: 4316174.
Article
13. Vasanthakumar A, Zullow H, Lepore JB, Thomas K, Young N, Anastasi J, Reardon CA, Godley LA. Epigenetic Control of Apolipoprotein E Expression Mediates Gender-Specific Hematopoietic Regulation. Stem Cells. 2015; DOI: 10.1002/stem.2214. [Epub ahead of print]. PMID: 26417967. PMCID: 4713251.
Article
14. Yang J, Corsello TR, Ma Y. Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. J Biol Chem. 2012; 287:1996–2005. DOI: 10.1074/jbc.M111.308734. PMCID: 3265879.
Article
15. Gao C, Kong NR, Chai L. The role of stem cell factor SALL4 in leukemogenesis. Crit Rev Oncog. 2011; 16:117–127. DOI: 10.1615/CritRevOncog.v16.i1-2.110. PMID: 22150312. PMCID: 3238789.
Article
16. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002; 295:1079–1082. DOI: 10.1126/science.1065173. PMID: 11834837.
Article
17. Santini V, Melnick A, Maciejewski JP, Duprez E, Nervi C, Cocco L, Ford KG, Mufti G. Epigenetics in focus: pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Crit Rev Oncol Hematol. 2013; 88:231–245. DOI: 10.1016/j.critrevonc.2013.06.004. PMID: 23838480.
Article
18. Sun XJ, Man N, Tan Y, Nimer SD, Wang L. The role of histone acetyltransferases in normal and malignant hematopoiesis. Front Oncol. 2015; 5:108. DOI: 10.3389/fonc.2015.00108. PMID: 26075180. PMCID: 4443728.
Article
19. Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol. 2012; 6:620–636. DOI: 10.1016/j.molonc.2012.10.006. PMID: 23141800.
Article
20. Bug G, Gül H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X, Beissert T, Boehrer S, Hoelzer D, Ottmann OG, Ruthardt M. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res. 2005; 65:2537–2541. DOI: 10.1158/0008-5472.CAN-04-3011. PMID: 15805245.
Article
21. Walasek MA, Bystrykh L, van den Boom V, Olthof S, Ausema A, Ritsema M, Huls G, de Haan G, van Os R. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation. Blood. 2012; 119:3050–3059. DOI: 10.1182/blood-2011-08-375386. PMID: 22327222.
Article
22. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010; 31:27–36. DOI: 10.1093/carcin/bgp220. PMCID: 2802667.
Article
23. Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008; 659:40–48. DOI: 10.1016/j.mrrev.2008.02.004. PMID: 18407786.
Article
24. Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128:693–705. DOI: 10.1016/j.cell.2007.02.005. PMID: 17320507.
Article
25. Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013; 27:1318–1338. DOI: 10.1101/gad.219626.113. PMID: 23788621. PMCID: 3701188.
Article
26. Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A, Bickmore WA. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell. 2010; 38:452–464. DOI: 10.1016/j.molcel.2010.02.032. PMID: 20471950. PMCID: 3132514.
Article
27. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004; 118:409–418. DOI: 10.1016/j.cell.2004.08.005. PMID: 15315754.
28. Iwama A, Oguro H, Negishi M, Kato Y, Nakauchia H. Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol. 2005; 81:294–300. DOI: 10.1532/IJH97.05011. PMID: 15914357.
Article
29. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003; 423:302–305. DOI: 10.1038/nature01587. PMID: 12714971.
Article
30. Arranz L, Herrera-Merchan A, Ligos JM, de Molina A, Dominguez O, Gonzalez S. Bmi1 is critical to prevent Ikaros-mediated lymphoid priming in hematopoietic stem cells. Cell Cycle. 2012; 11:65–78. DOI: 10.4161/cc.11.1.18097.
Article
31. Schuringa JJ, Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol. 2010; 17:294–299. DOI: 10.1097/MOH.0b013e328338c439. PMID: 20308890.
Article
32. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003; 423:255–260. DOI: 10.1038/nature01572. PMID: 12714970.
Article
33. Lund K, Adams PD, Copland M. EZH2 in normal and malignant hematopoiesis. Leukemia. 2014; 28:44–49. DOI: 10.1038/leu.2013.288.
Article
34. Wada T, Koyama D, Kikuchi J, Honda H, Furukawa Y. Overexpression of the shortest isoform of histone demethylase LSD1 primes hematopoietic stem cells for malignant transformation. Blood. 2015; 125:3731–3746. DOI: 10.1182/blood-2014-11-610907. PMID: 25904247.
Article
35. Forneris F, Binda C, Dall’Aglio A, Fraaije MW, Battaglioli E, Mattevi A. A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem. 2006; 281:35289–35295. DOI: 10.1074/jbc.M607411200. PMID: 16987819.
Article
36. Guo Y, Fu X, Jin Y, Sun J, Liu Y, Huo B, Li X, Hu X. Histone demethylase LSD1-mediated repression of GATA-2 is critical for erythroid differentiation. Drug Des Devel Ther. 2015; 9:3153–3162. PMID: 26124638. PMCID: 4482369.
Article
37. Sánchez C, Sánchez I, Demmers JA, Rodriguez P, Strouboulis J, Vidal M. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Proteomics. 2007; 6:820–834. DOI: 10.1074/mcp.M600275-MCP200. PMID: 17296600.
Article
38. Stewart MH, Albert M, Sroczynska P, Cruickshank VA, Guo Y, Rossi DJ, Helin K, Enver T. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice. Blood. 2015; 125:2075–2078. DOI: 10.1182/blood-2014-08-596734. PMID: 25655602. PMCID: 4467872.
Article
39. Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005; 20:845–854. DOI: 10.1016/j.molcel.2005.12.002. PMID: 16359901.
Article
40. Gatzka M, Tasdogan A, Hainzl A, Allies G, Maity P, Wilms C, Wlaschek M, Scharffetter-Kochanek K. Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation. Cell Death Differ. 2015; 22:1451–1462. DOI: 10.1038/cdd.2014.231. PMID: 25613381. PMCID: 4532772.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr