KoreaMed, a service of the Korean Association of Medical Journal Editors (KAMJE), provides access to articles published in Korean medical, dental, nursing, nutrition and veterinary journals. KoreaMed records include links to full-text content in Synapse and publisher web sites.
BACKGROUND Experimental studies have shown that gabapentin can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms have not yet been clearly determined. This study was conducted to determine whether gabapentin pretreatment altered expression levels of heat shock protein 70 and reduced acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion. METHODS: Forty male Sprague-Dawley rats (260-300 g) were randomly assigned to one of four groups (saline-treated, or 0.1, 0.5, or 5 mg/kg gabapentin group). In all animals, focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 1 hour. The animals of the gabapentin groups were pretreated with a single intravenous administration of gabapentin 20 minutes before ischemic insults. The infarct volume, brain edema and motor behavior deficits were analyzed 24 hours after ischemic insult. Caspase-3-reactive cells and cells showing Hsp70 activity were counted in the caudoputamen and fronto-parietal cortex. RESULTS: The infarction ratio was significantly decreased in the 5 mg/kg gabapentin group (P < 0.05) and brain edema ratios were significantly reduced in the 0.1 mg/kg, 0.5 mg/kg, and 5 mg/kg gabapentin groups 24 hours after ischemia/reperfusion injury (P < 0.05). There were more Hsp70-reactive cells in the 5 mg/kg gabapentin group than in the saline group in both the caudoputamen and fronto-parietal cortex (P < 0.05). CONCLUSIONS: These results indicate that gabapentin may have a neuroprotective effect and can reduce early neuronal injury caused by focal cerebral ischemia/reperfusion; this may be mediated by expression of Hsp70. However, gabapentin pretreatment did not prevent caspase-dependent apoptosis.