1. Knutson MD, Leeuwenburgh C. Resveratrol and novel potent activators of Sirt1: effects on aging and age-related diseases. Nutr Rev. 2008. 66:591–596.
Article
2. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999. 13:2570–2580.
Article
3. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol. 2007. 21:1745–1755.
Article
4. Jiang WJ. Sirtuins: novel targets for metabolic disease in drug development. Biochem Biophys Res Commun. 2008. 373:341–344.
Article
5. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2009. 31:194–223.
Article
6. Kong XX, Wang R, Liu XJ, Zhu LL, Shao D, Chang YS, et al. Function of Sirt1 in physiology. Biochemistry. 2009. 74:703–708.
Article
7. Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci. 2009. 1173:Suppl 1. E10–E19.
Article
8. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006. 126:257–268.
Article
9. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000. 289:2126–2128.
Article
10. Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A. 2006. 103:10230–10235.
Article
11. Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007. 104:12861–12866.
Article
12. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. Sirt1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007. 28:91–106.
Article
13. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006. 444:337–342.
Article
14. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating Sirt1 and PGC-1alpha. Cell. 2006. 127:1109–1122.
Article
15. Imai S, Kiess W. Therapeutic potential of Sirt1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes. Front Biosci. 2009. 14:2983–2995.
Article
16. Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, et al. Specific Sirt1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008. 8:347–358.
Article
17. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005. 2:105–117.
Article
18. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004. 429:771–776.
Article
19. Zabolotny JM, Kim YB. Silencing insulin resistance through Sirt1. Cell Metab. 2007. 6:247–249.
Article
20. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. Sirt1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007. 6:307–319.
Article
21. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. Sirt1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007. 6:759–767.
Article
22. Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci. 2006. 11:3129–3148.
Article
23. van der Veer E, Ho C, O'Neil C, Barbosa N, Scott R, Cregan SP, et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem. 2007. 282:10841–10845.
Article
24. Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of Sirt1. Nature. 2008. 451:583–586.
Article
25. Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, et al. Sirt1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007. 9:1253–1262.
Article
26. Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of Sirt1 cooperates with Sirt1 and facilitates suppression of p53 activity. Mol Cell. 2007. 28:277–290.
Article
27. Zhou G, Sebhat IK, Zhang BB. AMPK activators--potential therapeutics for metabolic and other diseases. Acta Physiol. 2009. 196:175–190.
28. Hegarty BD, Turner N, Cooney GJ, Kraegen EW. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol (Oxf). 2009. 196:129–145.
Article
29. Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and Sirt1 in metabolic tissues. Cell Cycle. 2008. 7:3669–3679.
Article
30. Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004. 18:3004–3009.
Article
31. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007. 104:12017–12022.
32. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity. Nature. 2009. 458:1056–1060.
Article
33. Rivera L, Moron R, Zarzuelo A, Galisteo M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol. 2009. 77:1053–1063.
Article
34. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008. 3:e2264.
Article
35. Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol. 2010. 635:1–8.
Article
36. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of Sirt1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007. 450:712–716.
Article