Yonsei Med J.  2018 Nov;59(9):1015-1025. 10.3349/ymj.2018.59.9.1015.

Bioactive Compounds for the Treatment of Renal Disease

Affiliations
  • 1Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. jyoo@wakehealth.edu
  • 2Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

Abstract

Kidney diseases including acute kidney injury and chronic kidney disease are among the largest health issues worldwide. Dialysis and kidney transplantation can replace a significant portion of renal function, however these treatments still have limitations. To overcome these shortcomings, a variety of innovative efforts have been introduced, including cell-based therapies. During the past decades, advances have been made in the stem cell and developmental biology, and tissue engineering. As part of such efforts, studies on renal cell therapy and artificial kidney developments have been conducted, and multiple therapeutic interventions have shown promise in the pre-clinical and clinical settings. More recently, therapeutic cell-secreting secretomes have emerged as a potential alternative to cell-based approaches. This approach involves the use of renotropic factors, such as growth factors and cytokines, that are produced by cells and these factors have shown effectiveness in facilitating kidney function recovery. This review focuses on the renotropic functions of bioactive compounds that provide protective and regenerative effects for kidney tissue repair, based on the available data in the literature.

Keyword

Acute kidney injury; kidney failure; chronic; tissue engineering; regenerative medicine

MeSH Terms

Acute Kidney Injury
Cell- and Tissue-Based Therapy
Cytokines
Developmental Biology
Dialysis
Intercellular Signaling Peptides and Proteins
Kidney
Kidney Diseases
Kidney Transplantation
Kidneys, Artificial
Recovery of Function
Regenerative Medicine
Renal Insufficiency
Renal Insufficiency, Chronic
Stem Cells
Tissue Engineering
Cytokines
Intercellular Signaling Peptides and Proteins

Reference

1. Maeshima A, Nakasatomi M, Nojima Y. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int. 2014; 2014:595493. PMID: 24895592.
Article
2. Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015; 82-83:1–11. PMID: 25451858.
Article
3. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011; 9:29. PMID: 21418664.
Article
4. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014; 2014:965849. PMID: 25530971.
Article
5. Little MH, Kairath P. Does renal repair recapitulate kidney development? J Am Soc Nephrol. 2017; 28:34–46. PMID: 27798243.
Article
6. Corridon PR, Ko IK, Yoo JJ, Atala A. Bioartificial kidneys. Curr Stem Cell Rep. 2017; 3:68–76.
Article
7. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001; 59:2023–2038. PMID: 11380804.
Article
8. Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol. 2004; 287:F7–F16. PMID: 15180923.
Article
9. Li Y, Joseph A, Bhargava MM, Rosen EM, Nakamura T, Goldberg I. Effect of scatter factor and hepatocyte growth factor on motility and morphology of MDCK cells. In Vitro Cell Dev Biol. 1992; 28A:364–368. PMID: 1534555.
Article
10. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell. 1991; 67:901–908. PMID: 1835669.
Article
11. Santos OF, Moura LA, Rosen EM, Nigam SK. Modulation of HGF-induced tubulogenesis and branching by multiple phosphorylation mechanisms. Dev Biol. 1993; 159:535–548. PMID: 8405677.
Article
12. Santos OF, Nigam SK. HGF-induced tubulogenesis and branching of epithelial cells is modulated by extracellular matrix and TGF-beta. Dev Biol. 1993; 160:293–302. PMID: 8253265.
13. Ishibashi K, Sasaki S, Sakamoto H, Hoshino Y, Nakamura T, Marumo F. Expressions of receptor gene for hepatocyte growth factor in kidney after unilateral nephrectomy and renal injury. Biochem Biophys Res Commun. 1992; 187:1454–1459. PMID: 1329737.
Article
14. Liu Y, Sun AM, Dworkin LD. Hepatocyte growth factor protects renal epithelial cells from apoptotic cell death. Biochem Biophys Res Commun. 1998; 246:821–826. PMID: 9618296.
Article
15. Yo Y, Morishita R, Nakamura S, Tomita N, Yamamoto K, Moriguchi A, et al. Potential role of hepatocyte growth factor in the maintenance of renal structure: anti-apoptotic action of HGF on epithelial cells. Kidney Int. 1998; 54:1128–1138. PMID: 9767528.
Article
16. Kawaida K, Matsumoto K, Shimazu H, Nakamura T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc Natl Acad Sci U S A. 1994; 91:4357–4361. PMID: 8183913.
Article
17. Rotwein P. Structure, evolution, expression and regulation of insulin-like growth factors I and II. Growth Factors. 1991; 5:3–18. PMID: 1772660.
Article
18. Hammerman MR, Miller SB. Therapeutic use of growth factors in renal failure. J Am Soc Nephrol. 1994; 5:1–11. PMID: 7948775.
Article
19. Abolbashari M, Agcaoili SM, Lee MK, Ko IK, Aboushwareb T, Jackson JD, et al. Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater. 2016; 29:52–61. PMID: 26596567.
Article
20. Feld S, Hirschberg R. Growth hormone, the insulin-like growth factor system, and the kidney. Endocr Rev. 1996; 17:423–480. PMID: 8897021.
Article
21. Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis. 2015; 65:327–336. PMID: 25151409.
Article
22. Ding H, Kopple JD, Cohen A, Hirschberg R. Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest. 1993; 91:2281–2287. PMID: 8486787.
Article
23. Miller SB, Martin DR, Kissane J, Hammerman MR. Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci U S A. 1992; 89:11876–11880. PMID: 1465411.
Article
24. Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol. 2007; 18:2921–2928. PMID: 17942965.
25. Xinaris C, Morigi M, Benedetti V, Imberti B, Fabricio AS, Squarcina E, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant. 2013; 22:423–436. PMID: 22889699.
Article
26. Fisher DA, Salido EC, Barajas L. Epidermal growth factor and the kidney. Annu Rev Physiol. 1989; 51:67–80. PMID: 2653200.
Article
27. Rogers SA, Ryan G, Hammerman MR. Metanephric transforming growth factor-alpha is required for renal organogenesis in vitro. Am J Physiol. 1992; 262(4 Pt 2):F533–F539. PMID: 1566867.
Article
28. Rall LB, Scott J, Bell GI, Crawford RJ, Penschow JD, Niall HD, et al. Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature. 1985; 313:228–231. PMID: 3871506.
Article
29. Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest. 1989; 84:1757–1761. PMID: 2592559.
Article
30. Morin NJ, Laurent G, Nonclercq D, Toubeau G, Heuson-Stiennon JA, Bergeron MG, et al. Epidermal growth factor accelerates renal tissue repair in a model of gentamicin nephrotoxicity in rats. Am J Physiol. 1992; 263(5 Pt 2):F806–F811. PMID: 1443171.
Article
31. Coimbra TM, Cieslinski DA, Humes HD. Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol. 1990; 259(3 Pt 2):F438–F443. PMID: 2396670.
Article
32. Sakai M, Zhang M, Homma T, Garrick B, Abraham JA, McKanna JA, et al. Production of heparin binding epidermal growth factor-like growth factor in the early phase of regeneration after acute renal injury. Isolation and localization of bioactive molecules. J Clin Invest. 1997; 99:2128–2138. PMID: 9151785.
Article
33. Homma T, Sakai M, Cheng HF, Yasuda T, Coffey RJ Jr, Harris RC. Induction of heparin-binding epidermal growth factor-like growth factor mRNA in rat kidney after acute injury. J Clin Invest. 1995; 96:1018–1025. PMID: 7635938.
Article
34. Zhuang S, Kinsey GR, Rasbach K, Schnellmann RG. Heparin-binding epidermal growth factor and Src family kinases in proliferation of renal epithelial cells. Am J Physiol Renal Physiol. 2008; 294:F459–F468. PMID: 18171996.
Article
35. El Sabbahy M, Vaidya VS. Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip Rev Syst Biol Med. 2011; 3:606–618. PMID: 21197658.
36. Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol. 2008; 294:F928–F936. PMID: 18272597.
Article
37. Leonard EC, Friedrich JL, Basile DP. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Renal Physiol. 2008; 295:F1648–F1657. PMID: 18799550.
Article
38. Chade AR, Kelsen S. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease. Circ Cardiovasc Interv. 2010; 3:376–383. PMID: 20587789.
Article
39. Iliescu R, Fernandez SR, Kelsen S, Maric C, Chade AR. Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant. 2010; 25:1079–1087. PMID: 19934087.
Article
40. Mori da Cunha MG, Zia S, Beckmann DV, Carlon MS, Arcolino FO, Albersen M, et al. Vascular endothelial growth factor up-regulation in human amniotic fluid stem cell enhances nephroprotection after ischemia-reperfusion injury in the rat. Crit Care Med. 2017; 45:e86–e96. PMID: 27548820.
Article
41. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012; 13:616–630. PMID: 22992590.
Article
42. Border WA, Noble NA, Yamamoto T, Tomooka S, Kagami S. Antagonists of transforming growth factor-beta: a novel approach to treatment of glomerulonephritis and prevention of glomerulosclerosis. Kidney Int. 1992; 41:566–570. PMID: 1573830.
43. O'Shea M, Miller SB, Finkel K, Hammerman MR. Roles of growth hormone and growth factors in the pathogenesis and treatment of kidney disease. Curr Opin Nephrol Hypertens. 1993; 2:67–72. PMID: 7922170.
44. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990; 346:371–374. PMID: 2374609.
45. Okuda S, Nakamura T, Yamamoto T, Ruoslahti E, Border WA. Dietary protein restriction rapidly reduces transforming growth factor beta 1 expression in experimental glomerulonephritis. Proc Natl Acad Sci U S A. 1991; 88:9765–9769. PMID: 1946401.
Article
46. Furuichi K, Kaneko S, Wada T. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol. 2009; 13:9–14. PMID: 19085040.
Article
47. Floege J, Johnson RJ. Multiple roles for platelet-derived growth factor in renal disease. Miner Electrolyte Metab. 1995; 21:271–282. PMID: 7565476.
48. Bessho K, Mizuno S, Matsumoto K, Nakamura T. Counteractive effects of HGF on PDGF-induced mesangial cell proliferation in a rat model of glomerulonephritis. Am J Physiol Renal Physiol. 2003; 284:F1171–F1180. PMID: 12595276.
49. Alpers CE, Seifert RA, Hudkins KL, Johnson RJ, Bowen-Pope DF. Developmental patterns of PDGF B-chain, PDGF-receptor, and alpha-actin expression in human glomerulogenesis. Kidney Int. 1992; 42:390–399. PMID: 1405322.
50. Nakagawa T, Sasahara M, Haneda M, Kataoka H, Nakagawa H, Yagi M, et al. Role of PDGF B-chain and PDGF receptors in rat tubular regeneration after acute injury. Am J Pathol. 1999; 155:1689–1699. PMID: 10550325.
Article
51. Nguyen TQ, Goldschmeding R. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res. 2008; 25:2416–2426. PMID: 18266088.
Article
52. Simon M, Maresh JG, Harris SE, Hernandez JD, Arar M, Olson MS, et al. Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol. 1999; 276(3 Pt 2):F382–F389. PMID: 10070161.
53. Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, et al. Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol. 2000; 279:F130–F143. PMID: 10894795.
Article
54. Almanzar MM, Frazier KS, Dube PH, Piqueras AI, Jones WK, Charette MF, et al. Osteogenic protein-1 mRNA expression is selectively modulated after acute ischemic renal injury. J Am Soc Nephrol. 1998; 9:1456–1463. PMID: 9697668.
Article
55. De Petris L, Hruska KA, Chiechio S, Liapis H. Bone morphogenetic protein-7 delays podocyte injury due to high glucose. Nephrol Dial Transplant. 2007; 22:3442–3450. PMID: 17686813.
Article
56. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003; 9:964–968. PMID: 12808448.
57. Gould SE, Day M, Jones SS, Dorai H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 2002; 61:51–60. PMID: 11786084.
58. Wang S, Hirschberg R. BMP7 antagonizes TGF-beta-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol. 2003; 284:F1006–F1013. PMID: 12676736.
59. Mitu GM, Wang S, Hirschberg R. BMP7 is a podocyte survival factor and rescues podocytes from diabetic injury. Am J Physiol Renal Physiol. 2007; 293:F1641–F1648. PMID: 17804487.
Article
60. Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, et al. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest. 1998; 102:202–214. PMID: 9649574.
Article
61. Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol. 2002; 13(Suppl 1):S14–S21. PMID: 11792757.
Article
62. Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, et al. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 2003; 63:2037–2049. PMID: 12753291.
63. Nishida M, Hamaoka K. How does G-CSF act on the kidney during acute tubular injury? Nephron Exp Nephrol. 2006; 104:e123–e128. PMID: 16902315.
Article
64. Zhang Y, Woodward VK, Shelton JM, Richardson JA, Zhou XJ, Link D, et al. Ischemia-reperfusion induces G-CSF gene expression by renal medullary thick ascending limb cells in vivo and in vitro. Am J Physiol Renal Physiol. 2004; 286:F1193–F1201. PMID: 14734360.
Article
65. Nishida M, Fujimoto S, Toiyama K, Sato H, Hamaoka K. Effect of hematopoietic cytokines on renal function in cisplatin-induced ARF in mice. Biochem Biophys Res Commun. 2004; 324:341–347. PMID: 15465024.
Article
66. Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol. 2005; 16:1684–1692. PMID: 15829714.
Article
67. Tögel F, Isaac J, Westenfelder C. Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol. 2004; 15:1261–1267. PMID: 15100366.
68. Togel FE, Westenfelder C. Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int Suppl. 2011; 1:87–89.
Article
69. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004; 10:858–864. PMID: 15235597.
Article
70. Gröne HJ, Cohen CD, Gröne E, Schmidt C, Kretzler M, Schlöndorff D, et al. Spatial and temporally restricted expression of chemokines and chemokine receptors in the developing human kidney. J Am Soc Nephrol. 2002; 13:957–967. PMID: 11912255.
Article
71. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 2005; 67:1772–1784. PMID: 15840024.
Article
72. Stokman G, Stroo I, Claessen N, Teske GJ, Florquin S, Leemans JC. SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury. Nephrol Dial Transplant. 2010; 25:3852–3859. PMID: 20519232.
Article
73. Ohnishi H, Mizuno S, Mizuno-Horikawa Y, Kato T. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury. J Vet Med Sci. 2015; 77:313–319. PMID: 25833353.
Article
74. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015; 33:747–785. PMID: 25706098.
Article
75. Weidenbusch M, Rodler S, Anders HJ. Interleukin-22 in kidney injury and regeneration. Am J Physiol Renal Physiol. 2015; 308:F1041–F1046. PMID: 25740595.
Article
76. Kulkarni OP, Hartter I, Mulay SR, Hagemann J, Darisipudi MN, Kumar Vr S, et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol. 2014; 25:978–989. PMID: 24459235.
Article
77. Xu MJ, Feng D, Wang H, Guan Y, Yan X, Gao B. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J Am Soc Nephrol. 2014; 25:967–977. PMID: 24459233.
Article
78. Zhang SL, Guo J, Moini B, Ingelfinger JR. Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis. Kidney Int. 2004; 66:2181–2192. PMID: 15569307.
Article
79. Weber KT. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol. 1997; 17:467–491. PMID: 9316215.
80. Gagliardini E, Benigni A. Drugs to foster kidney regeneration in experimental animals and humans. Nephron Exp Nephrol. 2014; 126:91. PMID: 24854648.
Article
81. Benigni A, Morigi M, Remuzzi G. Kidney regeneration. Lancet. 2010; 375:1310–1317. PMID: 20382327.
Article
82. Arcasoy MO. The non-haematopoietic biological effects of erythropoietin. Br J Haematol. 2008; 141:14–31. PMID: 18324962.
Article
83. Sharples EJ, Patel N, Brown P, Stewart K, Mota-Philipe H, Sheaff M, et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol. 2004; 15:2115–2124. PMID: 15284297.
Article
84. Spandou E, Tsouchnikas I, Karkavelas G, Dounousi E, Simeonidou C, Guiba-Tziampiri O, et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant. 2006; 21:330–336. PMID: 16221709.
Article
85. Yang CW, Li C, Jung JY, Shin SJ, Choi BS, Lim SW, et al. Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J. 2003; 17:1754–1755. PMID: 12958199.
Article
86. Bagnis C, Beaufils H, Jacquiaud C, Adabra Y, Jouanneau C, Le Nahour G, et al. Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant. 2001; 16:932–938. PMID: 11328897.
Article
87. Lee SH, Li C, Lim SW, Ahn KO, Choi BS, Kim YS, et al. Attenuation of interstitial inflammation and fibrosis by recombinant human erythropoietin in chronic cyclosporine nephropathy. Am J Nephrol. 2005; 25:64–76. PMID: 15746540.
Article
88. Dardashti A, Ederoth P, Algotsson L, Brondén B, Grins E, Larsson M, et al. Erythropoietin and protection of renal function in cardiac surgery (the EPRICS Trial). Anesthesiology. 2014; 121:582–590. PMID: 25225746.
Article
89. Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C, et al. Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol. 2009; 30:253–260. PMID: 19494484.
Article
90. Zhu F, Chong Lee Shin OL, Xu H, Zhao Z, Pei G, Hu Z, et al. Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. Am J Transl Res. 2017; 9:1694–1707. PMID: 28469775.
91. Chang YC, Hsu SY, Yang CC, Sung PH, Chen YL, Huang TH, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood). 2016; 241:1588–1602. PMID: 27037275.
Article
92. Yildirim ME, Badem H, Cakmak M, Yilmaz H, Kosem B, Karatas OF, et al. Melatonin protects kidney against apoptosis induced by acute unilateral ureteral obstruction in rats. Cent European J Urol. 2016; 69:225–230.
93. Maeshima A, Nojima Y, Kojima I. The role of the activin-follistatin system in the developmental and regeneration processes of the kidney. Cytokine Growth Factor Rev. 2001; 12:289–298. PMID: 11544099.
Article
94. Fang DY, Lu B, Hayward S, de Kretser DM, Cowan PJ, Dwyer KM. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice. Transplant Direct. 2016; 2:e87. PMID: 27830181.
Article
95. Maeshima A, Zhang YQ, Nojima Y, Naruse T, Kojima I. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol. 2001; 12:1685–1695. PMID: 11461941.
Article
96. Maeshima A, Mishima K, Yamashita S, Nakasatomi M, Miya M, Sakurai N, et al. Follistatin, an activin antagonist, ameliorates renal interstitial fibrosis in a rat model of unilateral ureteral obstruction. Biomed Res Int. 2014; 2014:376191. PMID: 24883308.
Article
97. Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev. 2017; 16:34–47. PMID: 27666815.
Article
98. Chen SC, Kuo PL. The role of galectin-3 in the kidneys. Int J Mol Sci. 2016; 17:565. PMID: 27089335.
Article
99. Nishiyama J, Kobayashi S, Ishida A, Nakabayashi I, Tajima O, Miura S, et al. Up-regulation of galectin-3 in acute renal failure of the rat. Am J Pathol. 2000; 157:815–823. PMID: 10980121.
Article
100. Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM. Galectin-3 in renal pathology: more than just an innocent bystander. Am J Nephrol. 2016; 43:305–317. PMID: 27166158.
Article
101. Liu P, Feng Y, Wang Y, Zhou Y, Zhao L. Protective effect of vitamin E against acute kidney injury. Biomed Mater Eng. 2015; 26(Suppl 1):S2133–S2144. PMID: 26405992.
Article
102. Cho MH, Kim SN, Park HW, Chung S, Kim KS. Could vitamin E prevent contrast-induced acute kidney injury? A systematic review and meta-analysis. J Korean Med Sci. 2017; 32:1468–1473. PMID: 28776342.
Article
103. Kim HB, Shanu A, Wood S, Parry SN, Collet M, McMahon A, et al. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res. 2011; 45:1000–1012. PMID: 21726176.
Article
104. Su X, Xie X, Liu L, Lv J, Song F, Perkovic V, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. Am J Kidney Dis. 2017; 69:69–77. PMID: 27707552.
Article
105. Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ. Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J. 2012; 26:158–168. PMID: 21965595.
106. Ko IK, Lee SJ, Atala A, Yoo JJ. In situ tissue regeneration through host stem cell recruitment. Exp Mol Med. 2013; 45:e57. PMID: 24232256.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr