Clin Exp Vaccine Res.  2016 Jul;5(2):108-116. 10.7774/cevr.2016.5.2.108.

Development of vaccines to Mycobacterium avium subsp. paratuberculosis infection

Affiliations
  • 1Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea. yoohs@snu.ac.kr
  • 2Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Korea.

Abstract

Johne's disease or paratuberculosis is a chronic debilitating disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease causes significant economic losses in livestock industries worldwide. There are no effective control measures to eradicate the disease because there are no appropriate diagnostic methods to detect subclinically infected animals. Therefore, it is very difficult to control the disease using only test and cull strategies. Vaccination against paratuberculosis has been considered as an alternative strategy to control the disease when combined with management interventions. Understanding host-pathogen interactions is extremely important to development of vaccines. It has long been known that Th1-mediated cellular immune responses are play a crucial role in protection against MAP infection. However, recent studies suggested that innate immune responses are more closely related to protective effects than adaptive immunity. Based on this understanding, several attempts have been made to develop vaccines against paratuberculosis. A variety of ideas for designing novel vaccines have emerged, and the tests of the efficacy of these vaccines are conducted constantly. However, no effective vaccines are commercially available. In this study, studies of the development of vaccines for MAP were reviewed and summarized.

Keyword

Vaccines; Immune responses; Mycobacterium avium subsp. paratuberculosis

MeSH Terms

Adaptive Immunity
Animals
Host-Pathogen Interactions
Immunity, Cellular
Immunity, Innate
Livestock
Mycobacterium avium subsp. paratuberculosis*
Mycobacterium avium*
Mycobacterium*
Paratuberculosis
Ruminants
Vaccination
Vaccines*
Vaccines

Reference

1. Harris NB, Barletta RG. Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine. Clin Microbiol Rev. 2001; 14:489–512.
Article
2. Sweeney RW. Transmission of paratuberculosis. Vet Clin North Am Food Anim Pract. 1996; 12:305–312.
Article
3. Whitlock RH, Buergelt C. Preclinical and clinical manifestations of paratuberculosis (including pathology). Vet Clin North Am Food Anim Pract. 1996; 12:345–356.
Article
4. Ott SL, Wells SJ, Wagner BA. Herd-level economic losses associated with Johne's disease on US dairy operations. Prev Vet Med. 1999; 40:179–192.
Article
5. Nielsen SS, Toft N. A review of prevalences of paratuberculosis in farmed animals in Europe. Prev Vet Med. 2009; 88:1–14.
Article
6. Lombard JE, Gardner IA, Jafarzadeh SR, et al. Herd-level prevalence of Mycobacterium avium subsp. paratuberculosis infection in United States dairy herds in 2007. Prev Vet Med. 2013; 108:234–238.
Article
7. Irenge LM, Walravens K, Govaerts M, et al. Development and validation of a triplex real-time PCR for rapid detection and specific identification of M. avium subsp. paratuberculosis in faecal samples. Vet Microbiol. 2009; 136:166–172.
Article
8. Tiwari A, VanLeeuwen JA, McKenna SL, Keefe GP, Barkema HW. Johne's disease in Canada Part I: clinical symptoms, pathophysiology, diagnosis, and prevalence in dairy herds. Can Vet J. 2006; 47:874–882.
9. Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces. Vet Microbiol. 2005; 109:147–158.
Article
10. Merkal RS, Thurston JR. Comparison of Mycobacterium paratuberculosis and other mycobacteria, using standard cytochemical tests. Am J Vet Res. 1966; 27:519–521.
11. Kennedy DJ, Benedictus G. Control of Mycobacterium avium subsp. paratuberculosis infection in agricultural species. Rev Sci Tech. 2001; 20:151–179.
Article
12. Mortier RA, Barkema HW, Wilson TA, Sajobi TT, Wolf R, De Buck J. Dose-dependent interferon-gamma release in dairy calves experimentally infected with Mycobacterium avium subspecies paratuberculosis. Vet Immunol Immunopathol. 2014; 161:205–210.
Article
13. Stabel JR. Host responses to Mycobacterium avium subsp. paratuberculosis: a complex arsenal. Anim Health Res Rev. 2006; 7:61–70.
Article
14. Cha SB, Yoo A, Park HT, Sung KY, Shin MK, Yoo HS. Analysis of transcriptional profiles to discover biomarker candidates in Mycobacterium avium subsp. paratuberculosis-infected macrophages, RAW 264.7. J Microbiol Biotechnol. 2013; 23:1167–1175.
Article
15. Shin MK, Park H, Shin SW, et al. Host transcriptional profiles and immunopathologic response following Mycobacterium avium subsp. paratuberculosis infection in mice. PLoS One. 2015; 10:e0138770.
Article
16. Shin MK, Park HT, Shin SW, et al. Whole-blood gene-expression profiles of cows infected with Mycobacterium avium subsp. paratuberculosis reveal changes in immune response and lipid metabolism. J Microbiol Biotechnol. 2015; 25:255–267.
Article
17. Bastida F, Juste RA. Paratuberculosis control: a review with a focus on vaccination. J Immune Based Ther Vaccines. 2011; 9:8.
Article
18. Geraghty T, Graham DA, Mullowney P, More SJ. A review of bovine Johne's disease control activities in 6 endemically infected countries. Prev Vet Med. 2014; 116:1–11.
Article
19. Gumber S, Taylor DL, Whittington RJ. Evaluation of the immunogenicity of recombinant stress-associated proteins during Mycobacterium avium subsp. paratuberculosis infection: implications for pathogenesis and diagnosis. Vet Microbiol. 2009; 137:290–296.
Article
20. Lu Z, Mitchell RM, Smith RL, et al. The importance of culling in Johne's disease control. J Theor Biol. 2008; 254:135–146.
Article
21. Juste RA. Slow infection control by vaccination: paratuberculosis. Vet Immunol Immunopathol. 2012; 148:190–196.
Article
22. Drewe JA, Pfeiffer DU, Kaneene JB. Epidemiology of Mycobacterium bovis. In : Thoen CO, Steele JH, Kaneene JB, editors. Zoonotic tuberculosis: Mycobacterium bovis and other pathogenic mycobacteria. 3rd ed. Hoboken, NJ: Wiley-Blackwell;2014. p. 63–77.
23. Balseiro A, Garcia Marin JF, Solano P, Garrido JM, Prieto JM. Histopathological classification of lesions observed in natural cases of paratuberculosis in free-ranging fallow deer (Dama dama). J Comp Pathol. 2008; 138:180–188.
Article
24. Bae JH, Jean YH. Spontaneous paratuberculosis in a sika deer: a case report. Korean J Vet Res. 1993; 33:673–678.
25. Bae YC, Kim HY, Kim HJ, et al. Paratuberculosis in mouflon (Ovis musimon): a case report. Korean J Vet Res. 2006; 46:271–274.
26. Kim JM, Ku BK, Lee HN, et al. Mycobacterium avium paratuberculosis in wild boars in Korea. J Wildl Dis. 2013; 49:413–417.
Article
27. Momotani E, Whipple DL, Thiermann AB, Cheville NF. Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer's patches in calves. Vet Pathol. 1988; 25:131–137.
Article
28. Kuehnel MP, Goethe R, Habermann A, et al. Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol. 2001; 3:551–566.
Article
29. Sweeney RW. Pathogenesis of paratuberculosis. Vet Clin North Am Food Anim Pract. 2011; 27:537–546.
Article
30. Boysen P, Storset AK. Bovine natural killer cells. Vet Immunol Immunopathol. 2009; 130:163–177.
Article
31. Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL. Gammadelta T cell function varies with the expressed WC1 coreceptor. J Immunol. 2005; 174:3386–3393.
Article
32. Koets A, Rutten V, Hoek A, et al. Progressive bovine paratuberculosis is associated with local loss of CD4(+) T cells, increased frequency of gamma delta T cells, and related changes in T-cell function. Infect Immun. 2002; 70:3856–3864.
Article
33. Manning EJ, Collins MT. Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis. Rev Sci Tech. 2001; 20:133–150.
Article
34. Stabel JR. Transitions in immune responses to Mycobacterium paratuberculosis. Vet Microbiol. 2000; 77:465–473.
Article
35. Sweeney RW, Jones DE, Habecker P, Scott P. Interferon-gamma and interleukin 4 gene expression in cows infected with Mycobacterium paratuberculosis. Am J Vet Res. 1998; 59:842–847.
36. Buza JJ, Hikono H, Mori Y, et al. Neutralization of interleukin-10 significantly enhances gamma interferon expression in peripheral blood by stimulation with Johnin purified protein derivative and by infection with Mycobacterium avium subsp. paratuberculosis in experimentally infected cattle with paratuberculosis. Infect Immun. 2004; 72:2425–2428.
Article
37. Coussens PM, Sipkovsky S, Murphy B, Roussey J, Colvin CJ. Regulatory T cells in cattle and their potential role in bovine paratuberculosis. Comp Immunol Microbiol Infect Dis. 2012; 35:233–239.
Article
38. de Almeida DE, Colvin CJ, Coussens PM. Antigen-specific regulatory T cells in bovine paratuberculosis. Vet Immunol Immunopathol. 2008; 125:234–245.
Article
39. Hsieh B, Schrenzel MD, Mulvania T, Lepper HD, DiMolfetto-Landon L, Ferrick DA. In vivo cytokine production in murine listeriosis: evidence for immunoregulation by gamma delta+ T cells. J Immunol. 1996; 156:232–237.
40. Park YH, Yoo HS, Yoon JW, Yang SJ, An JS, Davis WC. Phenotypic and functional analysis of bovine gammadelta lymphocytes. J Vet Sci. 2000; 1:39–48.
Article
41. Begg DJ, de Silva K, Carter N, Plain KM, Purdie A, Whittington RJ. Does a Th1 over Th2 dominancy really exist in the early stages of Mycobacterium avium subspecies paratuberculosis infections? Immunobiology. 2011; 216:840–846.
Article
42. Magombedze G, Eda S, Ganusov VV. Competition for antigen between Th1 and Th2 responses determines the timing of the immune response switch during Mycobaterium avium subspecies paratuberulosis infection in ruminants. PLoS Comput Biol. 2014; 10:e1003414.
Article
43. Ganusov VV, Klinkenberg D, Bakker D, Koets AP. Evaluating contribution of the cellular and humoral immune responses to the control of shedding of Mycobacterium avium spp. paratuberculosis in cattle. Vet Res. 2015; 46:62.
Article
44. Klinkenberg D, Koets A. The long subclinical phase of Mycobacterium avium ssp. paratuberculosis infections explained without adaptive immunity. Vet Res. 2015; 46:63.
Article
45. Faisal SM, Chen JW, Yan F, et al. Evaluation of a Mycobacterium avium subsp. paratuberculosis leuD mutant as a vaccine candidate against challenge in a caprine model. Clin Vaccine Immunol. 2013; 20:572–581.
Article
46. Ghosh P, Steinberg H, Talaat AM. Virulence and immunity orchestrated by the global gene regulator sigL in Mycobacterium avium subsp. paratuberculosis. Infect Immun. 2014; 82:3066–3075.
Article
47. Ghosh P, Shippy DC, Talaat AM. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis. Vaccine. 2015; 33:7262–7270.
Article
48. Foley-Thomas EM, Whipple DL, Bermudez LE, Barletta RG. Phage infection, transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology. 1995; 141(Pt 5):1173–1181.
Article
49. Harris NB, Feng Z, Liu X, Cirillo SL, Cirillo JD, Barletta RG. Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol Lett. 1999; 175:21–26.
Article
50. Park KT, Dahl JL, Bannantine JP, et al. Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol. 2008; 74:1687–1695.
Article
51. Scandurra GM, de Lisle GW, Cavaignac SM, Young M, Kawakami RP, Collins DM. Assessment of live candidate vaccines for paratuberculosis in animal models and macrophages. Infect Immun. 2010; 78:1383–1389.
Article
52. Shin SJ, Wu CW, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun. 2006; 74:3825–3833.
Article
53. Chen JW, Faisal SM, Chandra S, et al. Immunogenicity and protective efficacy of the Mycobacterium avium subsp. paratuberculosis attenuated mutants against challenge in a mouse model. Vaccine. 2012; 30:3015–3025.
Article
54. Colangeli R, Helb D, Vilcheze C, et al. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog. 2007; 3:e87.
Article
55. Dahl JL, Kraus CN, Boshoff HI, et al. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A. 2003; 100:10026–10031.
Article
56. Walburger A, Koul A, Ferrari G, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004; 304:1800–1804.
Article
57. Park KT, Allen AJ, Bannantine JP, et al. Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease. Vaccine. 2011; 29:4709–4719.
Article
58. Cavaignac SM, White SJ, de Lisle GW, Collins DM. Construction and screening of Mycobacterium paratuberculosis insertional mutant libraries. Arch Microbiol. 2000; 173:229–231.
Article
59. Bange FC, Brown AM, Jacobs WR Jr. Leucine auxotrophy restricts growth of Mycobacterium bovis BCG in macrophages. Infect Immun. 1996; 64:1794–1799.
Article
60. McAdam RA, Weisbrod TR, Martin J, et al. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun. 1995; 63:1004–1012.
Article
61. Khare S, Hondalus MK, Nunes J, Bloom BR, Garry Adams L. Mycobacterium bovis DeltaleuD auxotroph-induced protective immunity against tissue colonization, burden and distribution in cattle intranasally challenged with Mycobacterium bovis Ravenel S. Vaccine. 2007; 25:1743–1755.
Article
62. Mustafa T, Wiker HG, Morkve O, Sviland L. Reduced apoptosis and increased inflammatory cytokines in granulomas caused by tuberculous compared to non-tuberculous mycobacteria: role of MPT64 antigen in apoptosis and immune response. Clin Exp Immunol. 2007; 150:105–113.
Article
63. Mustafa T, Wiker HG, Morkve O, Sviland L. Differential expression of mycobacterial antigen MPT64, apoptosis and inflammatory markers in multinucleated giant cells and epithelioid cells in granulomas caused by Mycobacterium tuberculosis. Virchows Arch. 2008; 452:449–456.
Article
64. Hinchey J, Lee S, Jeon BY, et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest. 2007; 117:2279–2288.
Article
65. Ghosh P, Wu CW, Talaat AM. Key role for the alternative sigma factor, SigH, in the intracellular life of Mycobacterium avium subsp. paratuberculosis during macrophage stress. Infect Immun. 2013; 81:2242–2257.
Article
66. Bannantine JP, Hines ME 2nd, Bermudez LE, et al. A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol. 2014; 4:126.
Article
67. Lamont EA, Talaat AM, Coussens PM, et al. Screening of Mycobacterium avium subsp. paratuberculosis mutants for attenuation in a bovine monocyte-derived macrophage model. Front Cell Infect Microbiol. 2014; 4:87.
Article
68. Rosseels V, Huygen K. Vaccination against paratuberculosis. Expert Rev Vaccines. 2008; 7:817–832.
Article
69. Koets AP, Rutten VP, Hoek A, et al. Heat-shock protein-specific T-cell responses in various stages of bovine paratuberculosis. Vet Immunol Immunopathol. 1999; 70:105–115.
Article
70. Shin SJ, Chang CF, Chang CD, et al. In vitro cellular immune responses to recombinant antigens of Mycobacterium avium subsp. paratuberculosis. Infect Immun. 2005; 73:5074–5085.
Article
71. Huntley JF, Stabel JR, Bannantine JP. Immunoreactivity of the Mycobacterium avium subsp. paratuberculosis 19-kDa lipoprotein. BMC Microbiol. 2005; 5:3.
72. Rigden RC, Jandhyala DM, Dupont C, et al. Humoral and cellular immune responses in sheep immunized with a 22 kilodalton exported protein of Mycobacterium avium subspecies paratuberculosis. J Med Microbiol. 2006; 55(Pt 12):1735–1740.
Article
73. Nagata R, Muneta Y, Yoshihara K, Yokomizo Y, Mori Y. Expression cloning of gamma interferon-inducing antigens of Mycobacterium avium subsp. paratuberculosis. Infect Immun. 2005; 73:3778–3782.
Article
74. Olsen I, Reitan LJ, Holstad G, Wiker HG. Alkyl hydroperoxide reductases C and D are major antigens constitutively expressed by Mycobacterium avium subsp. paratuberculosis. Infect Immun. 2000; 68:801–808.
Article
75. Koets A, Hoek A, Langelaar M, et al. Mycobacterial 70 kD heat-shock protein is an effective subunit vaccine against bovine paratuberculosis. Vaccine. 2006; 24:2550–2559.
Article
76. Santema W, Hensen S, Rutten V, Koets A. Heat shock protein 70 subunit vaccination against bovine paratuberculosis does not interfere with current immunodiagnostic assays for bovine tuberculosis. Vaccine. 2009; 27:2312–2319.
Article
77. Santema W, Overdijk M, Barends J, Krijgsveld J, Rutten V, Koets A. Searching for proteins of Mycobacterium avium subspecies paratuberculosis with diagnostic potential by comparative qualitative proteomic analysis of mycobacterial tuberculins. Vet Microbiol. 2009; 138:191–196.
Article
78. Vrieling M, Santema W, Vordermeier M, Rutten V, Koets A. Hsp70 vaccination-induced primary immune responses in efferent lymph of the draining lymph node. Vaccine. 2013; 31:4720–4727.
Article
79. Huygen K. Plasmid DNA vaccination. Microbes Infect. 2005; 7:932–938.
Article
80. Huygen K. DNA vaccines against mycobacterial diseases. Future Microbiol. 2006; 1:63–73.
Article
81. Bull TJ, Gilbert SC, Sridhar S, et al. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis. PLoS One. 2007; 2:e1229.
Article
82. Bull TJ, Vrettou C, Linedale R, et al. Immunity, safety and protection of an Adenovirus 5 prime: modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves. Vet Res. 2014; 45:112.
83. Guzman E, Cubillos-Zapata C, Cottingham MG, et al. Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol. 2012; 86:5452–5466.
Article
84. Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol. 2002; 3:265–271.
Article
85. Reyes-Sandoval A, Rollier CS, Milicic A, et al. Mixed vector immunization with recombinant adenovirus and MVA can improve vaccine efficacy while decreasing antivector immunity. Mol Ther. 2012; 20:1633–1647.
Article
86. Chiodini RJ. Abolish Mycobacterium paratuberculosis strain 18. J Clin Microbiol. 1993; 31:1956–1958.
Article
87. Windsor P. Research into vaccination against ovine Johne's disease in Australia. Small Rumin Res. 2006; 62:139–142.
Article
88. Eppleston J, Reddacliff L, Windsor P, Links I, Whittington R. Preliminary observations on the prevalence of sheep shedding Mycobacterium avium subsp paratuberculosis after 3 years of a vaccination program for ovine Johne's disease. Aust Vet J. 2005; 83:637–638.
Article
89. Windsor PA, Eppleston J, Dhand NK, Whittington RJ. Effectiveness of Gudair vaccine for the control of ovine Johne's disease in flocks vaccinating for at least 5 years. Aust Vet J. 2014; 92:263–268.
Article
90. Stringer LA, Wilson PR, Heuer C, Mackintosh CG. A randomised controlled trial of Silirum vaccine for control of paratuberculosis in farmed red deer. Vet Rec. 2013; 173:551.
Article
91. Kohler H, Gyra H, Zimmer K, et al. Immune reactions in cattle after immunization with a Mycobacterium paratuberculosis vaccine and implications for the diagnosis of M. paratuberculosis and M. bovis infections. J Vet Med B Infect Dis Vet Public Health. 2001; 48:185–195.
Article
92. Muskens J, van Zijderveld F, Eger A, Bakker D. Evaluation of the long-term immune response in cattle after vaccination against paratuberculosis in two Dutch dairy herds. Vet Microbiol. 2002; 86:269–278.
Article
93. Santema W, Rutten V, Koets A. Bovine paratuberculosis: recent advances in vaccine development. Vet Q. 2011; 31:183–191.
Article
94. Good M, Duignan A. Perspectives on the History of Bovine TB and the Role of Tuberculin in Bovine TB Eradication. Vet Med Int. 2011; 2011:410470.
Article
95. Stabel JR, Waters WR, Bannantine JP, Lyashchenko K. Mediation of host immune responses after immunization of neonatal calves with a heat-killed Mycobacterium avium subsp. paratuberculosis vaccine. Clin Vaccine Immunol. 2011; 18:2079–2089.
Article
96. Patterson CJ, LaVenture M, Hurley SS, Davis JP. Accidental self-inoculation with Mycobacterium paratuberculosis bacterin (Johne's bacterin) by veterinarians in Wisconsin. J Am Vet Med Assoc. 1988; 192:1197–1199.
Full Text Links
  • CEVR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr