1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000; 28:235–242.
Article
2. Bossé JT, Janson H, Sheehan BJ, Beddek AJ, Rycroft AN, Kroll JS, Langford PR.
Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect. 2002; 4:225–235.
Article
3. Butt AM, Nasrullah I, Tahir S, Tong Y. Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One. 2012; 7:e43080.
4. Chawley P, Samal HB, Prava J, Suar M, Mahapatra RK. Comparative genomics study for identification of drug and vaccine targets in
Vibrio cholerae: MurA ligase as a case study. Genomics. 2014; 103:83–93.
Article
5. Chung WB, Bäckström LR, Collins MT. Experimental model of swine pneumonic pasteurellosis using crude Actinobacillus pleuropneumoniae cytotoxin and Pasteurella multocida given endobronchially. Can J Vet Res. 1994; 58:25–30.
6. Damte D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of
Mycoplasma hyopneumoniae. Genomics. 2013; 102:47–56.
Article
7. Doro F, Liberatori S, Rodríguez-Ortega MJ, Rinaudo CD, Rosini R, Mora M, Scarselli M, Altindis E, D'Aurizio R, Stella M, Margarit I, Maione D, Telford JL, Norais N, Grandi G. Surfome analysis as a fast track to vaccine discovery: identification of a novel protective antigen for Group B Streptococcus hypervirulent strain COH1. Mol Cell Proteomics. 2009; 8:1728–1737.
8. Doytchinova IA, Flower DR. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J. 2008; 1:22–26.
Article
9. Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P. Predicting conserved essential genes in bacteria:
in silico identification of putative drug targets. Mol Biosyst. 2010; 6:2482–2489.
Article
10. Garrett TA, Que NL, Raetz CR. Accumulation of a lipid A precursor lacking the 4′-phosphate following inactivation of the
Escherichia coli lpxK gene. J Biol Chem. 1998; 273:12457–12465.
Article
11. Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell. 2013; 52:248–254.
Article
12. Glory E, Murphy RF. Automated subcellular location determination and high-throughput microscopy. Dev Cell. 2007; 12:7–16.
Article
13. Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev. 1998; 62:1079–1093.
Article
14. Gottschalk M. Actinobacillosis. In : Zimmerman JJ, Karriker LA, Schwartz KJ, Stevenson GW, editors. Diseases of Swine. 10th ed. Chichester: Wiley-Blackwell;2012. p. 653–669.
15. Huang H, Potter AA, Campos M, Leighton FA, Willson PJ, Haines DM, Yates WD. Pathogenesis of porcine Actinobacillus pleuropneumonia, part II: roles of proinflammatory cytokines. Can J Vet Res. 1999; 63:69–78.
16. Hung MC, Link W. Protein localization in disease and therapy. J Cell Sci. 2011; 124:3381–3392.
Article
17. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016; 44:D457–D462.
Article
18. Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun. 2013; 4:3001.
Article
19. Kim B, Min K, Choi C, Cho WS, Cheon DS, Kwon D, Kim J, Chae C. Antimicrobial susceptibility of
Actinobacillus pleuropneumoniae isolated from pigs in Korea using new standardized procedures. J Vet Med Sci. 2001; 63:341–342.
Article
20. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001; 305:567–580.
Article
21. Li C, Ye Z, Wen L, Chen R, Tian L, Zhao F, Pan J. Identification of a novel vaccine candidate by immunogenic screening of
Vibrio parahaemolyticus outer membrane proteins. Vaccine. 2014; 32:6115–6121.
Article
22. Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 2014; 42:D574–D580.
23. Mobegi FM, van Hijum SA, Burghout P, Bootsma HJ, de Vries SP, van der Gaast-de Jongh CE, Simonetti E, Langereis JD, Hermans PW, de Jonge MI, Zomer A. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics. 2014; 15:958.
Article
24. Morya VK, Dewaker V, Mecarty SD, Singh R. In silico analysis metabolic pathways for identification of putative drug targets for Staphylococcus aureus. J Comput Sci Syst Biol. 2010; 3:62–69.
25. Nguyen-Distèche M, Fraipont C, Buddelmeijer N, Nanninga N. The structure and function of
Escherichia coli penicillin-binding protein 3. Cell Mol Life Sci. 1998; 54:309–316.
Article
26. Nishio M, Okada N, Miki T, Haneda T, Danbara H. Identification of the outer-membrane protein PagC required for the serum resistance phenotype in
Salmonella enterica serovar Choleraesuis. Microbiology. 2005; 151:863–873.
Article
27. Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev. 2011; 12:133–148.
Article
28. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 2014; 42:D336–D346.
Article
29. Pinho MG, Filipe SR, de Lencastre H, Tomasz A. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in
Staphylococcus aureus. J Bacteriol. 2001; 183:6525–6531.
Article
30. Potrykus K, Cashel M. (p)ppGpp: still magical? Annu Rev Microbiol. 2008; 62:35–51.
Article
31. Seib KL, Dougan G, Rappuoli R. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet. 2009; 5:e1000612.
Article
32. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One. 2013; 8:e59126.
33. Simon I, Wright M, Flohr T, Hevezi P, Caras IW. Determining subcellular localization of novel drug targets by transient transfection in COS cells. Cytotechnology. 2001; 35:189–196.
34. Spratt BG. Distinct penicillin binding proteins involved in the division, elongation, and shape of
Escherichia coli K12. Proc Natl Acad Sci U S A. 1975; 72:2999–3003.
Article
35. Uddin R, Saeed K, Khan W, Azam SS, Wadood A. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant
Staphylococcus aureus. Gene. 2015; 556:213–226.
Article
36. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43:D204–D212.
37. Vanni M, Merenda M, Barigazzi G, Garbarino C, Luppi A, Tognetti R, Intorre L. Antimicrobial resistance of
Actinobacillus pleuropneumoniae isolated from swine. Vet Microbiol. 2012; 156:172–177.
Article
38. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006; 34:D668–D672.
39. Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, Zhao FK, Pan JY. Outer membrane protein OmpW of
Escherichia coli is required for resistance to phagocytosis. Res Microbiol. 2013; 164:848–855.
Article
40. Yoo AN, Cha SB, Shin MK, Won HK, Kim EH, Choi HW, Yoo HS. Serotypes and antimicrobial resistance patterns of the recent Korean
Actinobacillus pleuropneumoniae isolates. Vet Rec. 2014; 174:223.
Article
41. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006; 64:643–651.
Article
42. Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 2009; 37:D455–D458.
Article