J Bacteriol Virol.  2015 Mar;45(1):19-25. 10.4167/jbv.2015.45.1.19.

Prevalence and Characterization of Actinobacillus pleuropneumoniae Isolated from Korean Pigs

Affiliations
  • 1Animal and Plant Quarantine Agency, MAFRA, Anyang, Korea. yangdk@korea.kr
  • 2ChoongAng Vaccine Laboratories, Daejon, Korea.

Abstract

Actinobacillus pleuropneumoniae causes porcine pleuropneumoniae which is one of severe threats to the swine industry. In total, 54 strains of Actinobacillus pleuropneumoniae were isolated from 443 pigs between 2012 and 2013 in Korea. Isolates were classified into serotypes 1, 2, 5, 7, 12, and unclassified by multiplex PCR. Genotypes of isolates were divided into three groups according to the sequence of the omlA gene. The antimicrobial resistance rate of serotype 1 was slightly higher than that of serotype 5. In conclusion, to block and treat porcine pleuropneumonia, it is necessary to conduct ongoing characterization of A. pleuropneumoniae isolated from pigs.

Keyword

Actinobacillus pleuropneumoniae; Serotype; Genotype; Antimicrobial

MeSH Terms

Actinobacillus pleuropneumoniae*
Genotype
Korea
Multiplex Polymerase Chain Reaction
Pleuropneumonia
Prevalence*
Swine*

Figure

  • Figure 1. Alignment among the omlA gene of A. pleuropneumoniae


Cited by  1 articles

Construction and immunization with double mutant Δ apxIBD Δ pnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5
Hoai Thu Dao, Quang Lam Truong, Van Tan Do, Tae-Wook Hahn
J Vet Sci. 2020;21(2):.    doi: 10.4142/jvs.2020.21.e20.


Reference

1). Chatellier S, Harel J, Dugourd D, Chevallier B, Kobisch M, Gottschalk M. Genomic relatedness among Actinobacillus pleuropneumoniae field strains of sterotypes 1 and 5 isolated from healthy and diseased pigs. Can J Vet Res. 1999; 63:170–6.
2). Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res. 2010; 41:65.
3). Del Pozo Sacristán R, Michiels A, Martens M, Haesebrouck F, Maes D. Efficacy of vaccination against Actinobacillus pleuropneumoniae in two Belgian farrow-to-finish pig herds with a history of chronic pleurish. Vet Rec. 2014; 174:302.
4). Ohba T, Shibahara T, Kobayashi H, Takashima A, Nagoshi M, Araki M, et al. Prevalence of granulomatous pleuropneumonia associated with Actinobacillus pleuropneumoniae serotype 2 in slaughter pigs. J Vet Med Sci. 2009; 71:1089–92.
5). Schuchert JA, Inzana TJ, Angen Ø, Jessing S. Detection and identification of Actinobacillus pleuropneumoniae serotypes 1, 2, and 8 by Multiplex PCR. J Clin Microbiol. 2004; 42:4344–8.
6). Gram T, Ahrens P. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein. J Clin Microbiol. 1998; 36:443–8.
7). Jung BY, Cho GJ, Kim BH, Cho KH. Biochemical characteristics and serotypes of Actinobacillus pleuropneumoniae isolated from pneumonic lungs of pigs. Korean J Vet Res. 1996; 36:181–6.
8). Schaller A, Kuhn R, Kuhnert P, Nicolet J, Anderson TJ, Maclnnes JI, et al. Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiology. 1999; 145:2105–16.
9). Cho WS, Chae C. Genotypic prevalence of apxIV in Actinobacillus pleuropneumoniae field isolates. J Vet Diagn Invest. 2001; 13:175–7.
10). Jessing SG, Angen Ø, Inzana TJ. Evaluation of a multiplex PCR test for simultaneous identification and serotyping of Actinobacillus pleuropneumoniae serotypes 2, 5, and 6. J Clin Microbiol. 2003; 41:4095–100.
11). Lo TM, Ward CK, Inzana TJ. Detection and identification of Actinobacillus pleuropneumoniae serotype 5 by Multiplex PCR. J Clin Microbiol. 1998; 36:1704–10.
12). Shin MK, Cha SB, Lee WJ, Yoo HS. Predicting genetic traits and epitope analysis of apxIVA in Actinobacillus pleuropneumoniae. J Microbiol. 2011; 49:462–8.
13). Rossi CC, de Araújo EF, de Queiroz MV, Bazzolli DM. Characterization of the omlA gene from different serotypes of Actinobacillus pleuropneumoniae: A new insight into an old approach. Genet Mol Biol. 2013; 36:243–51.
14). Dayao DA, Gibson JS, Blackall PJ, Turni C. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. Vet Microbiol. 2014; 171:232–5.
Article
15). de Jong A, Thomas V, Simjee S, Moyaert H, El Garch F, Maher K, et al. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: The VetPath study. Vet Microbiol. 2014; 172:202–15.
Article
16). Vanni M, Merenda M, Barigazzi G, Garbarino C, Luppi A, Tognetti R, et al. Antimicrobial resistance of Actinobacillus pleuropneumoniae isolated from swine. Vet Microbiol. 2012; 156:172–7.
17). Yoo AN, Cha SB, Shin MK, Won HK, Kim EH, Choi HW, et al. Serotypes and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae isolates. Vet Rec. 2014; 174:223.
18). Kim B, Min K, Choi C, Cho WS, Cheon DS, Kwon D, et al. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolated from pigs in Korea using new standardized procedures. J Vet Med Sci. 2001; 63:341–2.
19). Ramjeet M, Deslandes V, Gouré J, Jacques M. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev. 2008; 9:25–45.
20). Asawa T, Kobayashi H, Mitani K, Ito N, Morozumi T. Serotypes and antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolated from piglets with pleuropneumonia. J Vet Med Sci. 1995; 57:757–9.
Full Text Links
  • JBV
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr