Int J Stem Cells.  2017 Nov;10(2):184-192. 10.15283/ijsc17028.

A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum

Affiliations
  • 1Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria. hsn.ghmkin@gmail.com maljamali@gmail.com
  • 2Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria.
  • 3National Commission for Biotechnology (NCBT), Damascus, Syria.

Abstract

BACKGROUND AND OBJECTIVES
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from umbilical cords and are therapeutically used because of their ability to differentiate into various types of cells, in addition to their immunosuppressive and anti-inflammatory properties. Fetal bovine serum (FBS), considered as the standard additive when isolating and culturing MSCs, has a major limitation related to its animal origin. Here, we employed a simple and economically efficient protocol to isolate MSCs from human umbilical cord tissues without using digestive enzymes and replacing FBS with umbilical cord blood serum (CBS).
METHODS AND RESULTS
MSCs were isolated by culturing umbilical cord pieces in CBS or FBS supplemented media. Expansion and proliferation kinetics of cells isolated by explant method in the presence of either FBS or CBS were measured, with morphology and multi-differentiation potential of expanded cells characterized by flow cytometry, RT-PCR, and immunofluorescence. MSCs maintained morphology, immunophenotyping, multi-differentiation potential, and self-renewal ability, with better proliferation rates for cells cultured in CBS compared to FBS supplement media.
CONCLUSIONS
We here present a simple, reliable and efficient method to isolate MSCs from umbilical cord tissues, where cells maintained proliferation, differentiation potential and immunophenotyping properties and could be efficiently expanded for clinical applications.

Keyword

Mesenchymal stem cells; Cord blood serum; Isolation; Differentiation

MeSH Terms

Animals
Fetal Blood*
Flow Cytometry
Fluorescent Antibody Technique
Humans*
Immunophenotyping
Kinetics
Mesenchymal Stromal Cells*
Methods*
Multipotent Stem Cells
Umbilical Cord*

Figure

  • Fig. 1 Fibroblastic morphology of MSCs isolated from 5 cm2 umbilical cord explants and expanded in FBS supplement medium (A~C) or CBS supplement medium (D~F). (A, D) migrating cells appearing at the edge of explants after 7 days (150×). (B, E) adherent cells after removing explants (600×). (C, F) MSCs at confluence in passage 3 (300×).

  • Fig. 2 Proliferation kinetics of UCMSCs in CBS and FBS supplemented media. Initial densities at each passage were 10,000/well and results are shown as means±SE. (A) Population doublings time (PDT). (B) Fold increase. *p-value<0.05.

  • Fig. 3 Adipogenic and osteogenic differentiation of MSCs. (A, C, E, G) are controls were MSCs from passage 3 were cultured and stained similarly in the presence of FBS supplemented medium (A, E) or CBS supplemented medium (C, G). (B, D) osteogenic differentiation showed positive staining of mineralized by Alizarin red. (F, H) adipogenic differentiation showed positive staining of lipid vacuoles by Sudan III.

  • Fig. 4 2% agarose gel electrophoresis for amplified transcripts expressed by MSCs cultured in FBS supplement medium (A) or in CBS supplement medium (B). (1, 5) beta-actin amplicon of 100bp used as control. (2, 6) CD105 amplicon of 165 bp. (3. 7) CD90 amplicon of 124 bp. (4, 8) CD44 amplicon of 233 bp.

  • Fig. 5 Flow cytometry of UCMSCs cultured in human CBS supplemented medium (A~F) and in FBS supplemented medium (G~L). (A, G) FSC and SSC distribution of gated cells. Cells stained positive for CD90 (B, H), CD105 (C, I), CD44 (D, J), while stained negative for CD45 (E, K), and CD34 (F, L).

  • Fig. 6 Immunofluorescence for CD105, CD44 and CD90 expression in MSCs cultured in CBS supplement media (A~C) or in FBS supplement media (D~F). Positive staining for CD105 (A, D), CD44 (B, E), and CD90 (C, F). Nuclei were counterstained with DAPI (blue).


Cited by  2 articles

Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Ace Card to Address Autoimmune Diseases
Hussein Baharlooi, Maryam Azimi, Zahra Salehi, Maryam Izad
Int J Stem Cells. 2019;13(1):13-23.    doi: 10.15283/ijsc19108.

Characterization and Differentiation of Circulating Blood Mesenchymal Stem Cells and the Role of Phosphatidylinositol 3-Kinase in Modulating the Adhesion
Yoon-Kyung Park, Seong-Joo Heo, Jai-Young Koak, Gang-Seok Park, Tae-Jun Cho, Seong-Kyun Kim, Jaejin Cho
Int J Stem Cells. 2019;12(2):265-278.    doi: 10.15283/ijsc18136.


Reference

References

1. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006; 2:155–162. DOI: 10.1007/s12015-006-0022-y.
Article
2. Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007; 25:2886–2895. DOI: 10.1634/stemcells.2007-0417. PMID: 17690177.
Article
3. Chua SJ, Bielecki R, Wong CJ, Yamanaka N, Rogers IM, Casper RF. Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochem Biophys Res Commun. 2009; 379:217–221. DOI: 10.1016/j.bbrc.2008.12.045.
Article
4. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015; 24:339–347. DOI: 10.3727/096368915X686841. PMID: 25622293.
Article
5. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013; 34:747–754. DOI: 10.1038/aps.2013.50. PMID: 23736003. PMCID: 4002895.
Article
6. Cui R, Rekasi H, Hepner-Schefczyk M, Fessmann K, Petri RM, Bruderek K, Brandau S, Jäger M, Flohé SB. Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Res Ther. 2016; 7:88. DOI: 10.1186/s13287-016-0353-9. PMID: 27388156. PMCID: 4937587.
Article
7. Fierabracci A, Del Fattore A, Muraca M. The immunoregulatory activity of mesenchymal stem cells: ‘state of art’ and ‘future avenues’. Curr Med Chem. 2016; 23:3014–3024. DOI: 10.2174/0929867323666160627112827.
Article
8. Helal MA, Shaheen NE, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol Immunotoxicol. 2016; 1–9. PMID: 27560658.
Article
9. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004; 103:1669–1675. DOI: 10.1182/blood-2003-05-1670.
Article
10. Wolfe M, Pochampally R, Swaney W, Reger RL. Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol. 2008; 449:3–25. PMID: 18370080.
Article
11. Avola R, Graziano AC, Pannuzzo G, Cardile V. Human mesenchymal stem cells from adipose tissue differentiated into neuronal or glial phenotype express different aqua-porins. Mol Neurobiol. 2016; [Epub ahead of print].
Article
12. Ou H, Zhao S, Peng Y, Xiao X, Wang Q, Liu H, Xiao X, Yang M. Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis. Mol Med Rep. 2016; 14:3862–3870. DOI: 10.3892/mmr.2016.5694. PMID: 27600821.
Article
13. Ding Y, Lu Z, Yuan Y, Wang X, Li D, Zeng Y. Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2013; 30:1279–1282.
14. Pelekanos RA, Sardesai VS, Futrega K, Lott WB, Kuhn M, Doran MR. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue. J Vis Exp. 2016; (112):DOI: 10.3791/54204. PMID: 27340821. PMCID: 4927767.
Article
15. Fei X, Jiang S, Zhang S, Li Y, Ge J, He B, Goldstein S, Ruiz G. Isolation, culture, and identification of amniotic fluid-derived mesenchymal stem cells. Cell Biochem Biophys. 2013; 67:689–694. DOI: 10.1007/s12013-013-9558-z. PMID: 23508888.
Article
16. Wouters G, Grossi S, Mesoraca A, Bizzoco D, Mobili L, Cignini P, Giorlandino C. Isolation of amniotic fluid-derived mesenchymal stem cells. J Prenat Med. 2007; 1:39–40. PMID: 22470826. PMCID: 3309337.
17. Pham PV, Vu NB, Pham VM, Truong NH, Pham TL, Dang LT, Nguyen TT, Bui AN, Phan NK. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med. 2014; 12:56. DOI: 10.1186/1479-5876-12-56. PMID: 24565047. PMCID: 3939935.
Article
18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315–317. DOI: 10.1080/14653240600855905. PMID: 16923606.
Article
19. Mennan C, Wright K, Bhattacharjee A, Balain B, Richardson J, Roberts S. Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed Res Int. 2013; DOI: 10.1155/2013/916136. PMID: 23984420. PMCID: 3741948.
Article
20. Iftimia-Mander A, Hourd P, Dainty R, Thomas RJ. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization. Biopreserv Biobank. 2013; 11:291–298. DOI: 10.1089/bio.2013.0027.
Article
21. Yoon JH, Roh EY, Shin S, Jung NH, Song EY, Chang JY, Kim BJ, Jeon HW. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. Biomed Res Int. 2013; DOI: 10.1155/2013/428726.
Article
22. Hendijani F, Sadeghi-Aliabadi H, Haghjooy Javanmard S. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton’s jelly matrix. Cell Tissue Bank. 2014; 15:555–565. DOI: 10.1007/s10561-014-9425-1. PMID: 24532125.
Article
23. Capelli C, Gotti E, Morigi M, Rota C, Weng L, Dazzi F, Spinelli O, Cazzaniga G, Trezzi R, Gianatti A, Rambaldi A, Golay J, Introna M. Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy. 2011; 13:786–801. DOI: 10.3109/14653249.2011.563294. PMID: 21417678.
Article
24. Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif. 2017; 50:DOI: 10.1111/cpr.12334. PMID: 28144997.
Article
25. Wolfe M, Tucker A, Reger RL, Prockop DJ. Multipotent stromal cells (hMSCs). Masters JRW, Palsson B, editors. Human Adult Stem Cells. Dordrecht, Netherlands: Springer;2009. p. 45–72. DOI: 10.1007/978-90-481-2269-1_2.
Article
26. Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K. “Humanized” stem cell culture techniques: the animal serum controversy. Stem Cells Int. 2011; DOI: 10.4061/2011/504723.
Article
27. Bieback K. Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother. 2013; 40:326–335. DOI: 10.1159/000354061. PMID: 24273486. PMCID: 3822281.
Article
28. Díez JM, Bauman E, Gajardo R, Jorquera JI. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res Ther. 2015; 6:28. DOI: 10.1186/s13287-015-0016-2. PMID: 25889980. PMCID: 4396121.
Article
29. Tateishi K, Ando W, Higuchi C, Hart DA, Hashimoto J, Nakata K, Yoshikawa H, Nakamura N. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant. 2008; 17:549–557. DOI: 10.3727/096368908785096024. PMID: 18714674.
Article
30. Shetty P, Bharucha K, Tanavde V. Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells. Cell Biol Int. 2007; 31:293–298. DOI: 10.1016/j.cellbi.2006.11.010. PMID: 17208468.
Article
31. Salzig D, Leber J, Merkewitz K, Lange MC, Köster N, Czermak P. Attachment, growth, and detachment of human mesenchymal stem cells in a chemically defined medium. Stem Cells Int. 2016; DOI: 10.1155/2016/5246584. PMID: 27006663. PMCID: 4781990.
Article
32. Kinzebach S, Bieback K. Expansion of mesenchymal stem/stromal cells under xenogenic-free culture conditions. Weyand B, Benda C, editors. Mesenchymal stem cells: basics and clinical application. Heidelberg, Berlin: Springer;2013. p. 33–57.
Article
33. Song HJ, Zhang P, Guo XJ, Liao LM, Zhou ZM, Sha JH, Cui YG, Ji H, Liu JY. The proteomic analysis of human neonatal umbilical cord serum by mass spectrometry. Acta Pharmacol Sin. 2009; 30:1550–1558. DOI: 10.1038/aps.2009.140. PMID: 19890362. PMCID: 4003003.
Article
34. Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, Aysola M, Rapiejko PJ. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochemical Engineering Journal. 2016; 108:3–13. DOI: 10.1016/j.bej.2015.08.014.
Article
35. Phadnis SM, Joglekar MV, Venkateshan V, Ghaskadbi SM, Hardikar AA, Bhonde RR. Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells. In Vitro Cell Dev Biol Anim. 2006; 42:283–286.
Article
36. Hemeda H, Giebel B, Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy. 2014; 16:170–180. DOI: 10.1016/j.jcyt.2013.11.004. PMID: 24438898.
Article
37. Van Pham P, Truong NC, Le PT, Tran TD, Vu NB, Bui KH, Phan NK. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell Tissue Bank. 2016; 17:289–302. DOI: 10.1007/s10561-015-9541-6.
Article
38. Shetty P, Cooper K, Viswanathan C. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci. 2010; 4:14–24. DOI: 10.4103/0973-6247.59386. PMID: 20376261. PMCID: 2847339.
Article
39. Turnovcova K, Ruzickova K, Vanecek V, Sykova E, Jendelova P. Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy. 2009; 11:874–885. DOI: 10.3109/14653240903188947. PMID: 19903100.
Article
40. Tekkatte C, Vidyasekar P, Kapadia NK, Verma RS. Enhancement of adipogenic and osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells by supplementation with umbilical cord blood serum. Cell Tissue Res. 2012; 347:383–395. DOI: 10.1007/s00441-012-1328-5. PMID: 22311206.
Article
41. Cooper K, SenMajumdar A, Viswanathan C. Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. Int J Stem Cells. 2010; 3:119–128. DOI: 10.15283/ijsc.2010.3.2.119. PMID: 24855549. PMCID: 4021805.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr