Immune Netw.  2017 Feb;17(1):41-47. 10.4110/in.2017.17.1.41.

Regulatory Eosinophils in Inflammation and Metabolic Disorders

Affiliations
  • 1Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea. yangbg@yuhs.ac
  • 2Department of Microbiology, Raduate School of Medicine, Ewha Womans University, Seoul 07984, Korea.
  • 3WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan.

Abstract

Eosinophils are potent effector cells implicated in allergic responses and helminth infections. Responding to stimuli, they release their granule-derived cytotoxic proteins and are involved in inflammatory processes. However, under homeostatic conditions, eosinophils are abundantly present in the intestine and are constantly in contact with the gut microbiota and maintain the balance of immune responses without inflammation. This situation indicates that intestinal eosinophils have an anti-inflammatory function unlike allergic eosinophils. In support of this notion, some papers have shown that eosinophils have different phenotypes depending on the site of residence and are a heterogeneous cell population. Recently, it was reported that eosinophils in the small intestine and adipose tissue, respectively, contribute to homeostasis of intestinal immune responses and metabolism. Accordingly, in this review, we summarize new functions of eosinophils demonstrated in recent studies and discuss their homeostatic functions.

Keyword

Eosinophils; Anti-inflammation; IL-1R antagonist; Th17 cells; IL-4; IgA

MeSH Terms

Adipose Tissue
Eosinophils*
Gastrointestinal Microbiome
Helminths
Homeostasis
Immunoglobulin A
Inflammation*
Interleukin-4
Intestine, Small
Intestines
Metabolism
Phenotype
Th17 Cells
Immunoglobulin A
Interleukin-4

Figure

  • Figure 1 Anti-inflammatory functions of eosinophils. Small-intestinal eosinophils suppress differentiation and/or proliferation of Th17 cells via production of a large amount of IL-1Ra and are involved in homeostasis of intestinal immunity. Meanwhile, eosinophils in adipose tissue activate M2 macrophages through IL-4 expression and inhibit inflammation, thereby contributing to metabolic homeostasis.


Reference

1. Rothenberg ME, Hogan SP. The Eosinophil. Annu Rev Immunol. 2006; 24:147–174.
Article
2. Garcia NV, Umemoto E, Sito Y, Yamasaki M, Hata E, Matozaki T, Murakami M, Jung YJ, Woo SY, Seoh JY, Jang MH, Aozasa K, Miyasaka M. SIRPα/CD172a regulates eosinophil homeostasis. J Immunol. 2011; 187:2268–2277.
Article
3. Carlens J, Wahl B, Ballmaier M, Bulfone-Paus S, Förster R, Pabst O. Common γ-chain-dependent signal confer selevtive survival of eosinophils in the murine small intestine. J Immunol. 2009; 183:5600–5607.
Article
4. Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest. 1999; 103:1719–1727.
Article
5. Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990; 172:1425–1431.
Article
6. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, lung damage in a mouse asthma model. J Exp Med. 1996; 183:195–201.
Article
7. Nussbaum JC, Dyken SJV, Moltke JV, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE, Locksley RM. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013; 502:245–248.
Article
8. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002; 195:1387–1395.
Article
9. Lee JJ, Dimina D, Macias MP, Ochkur SI, Mcgarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004; 305:1773–1776.
Article
10. Chu VT, Beller A, Rausch S, Strandmark J, Zänker M, Arbach O, Kruglov A, Berek C. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity. 2014; 40:582–593.
Article
11. Sugawara R, Lee EJ, Jang MS, Jeun EJ, Hong CP, Kim JH, Park A, Yun CH, Hong SW, Kim YM, Seoh JY, Jung Y, Surh CD, Miyasaka M, Yang BG, Jang MH. Small intestinal eosinophils regulate Th17 cells by producing Il-1 receptor antagonist. J Exp Med. 2016; 213:555–567.
Article
12. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011; 332:243–247.
Article
13. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Eosinophils and type 2 cyotkine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014; 157:1292–1308.
Article
14. Slims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010; 10:89–102.
Article
15. Casini-Raggi V, Kam L, Chong YJ, Fiocchi C, Pizarro TT, Cominelli F. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J Immunol. 1995; 154:2434–2440.
16. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Kwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A. 2003; 100:5986–5990.
Article
17. Koenders MI, Devesa I, Marijnissen RJ, Abdollahi-Roodsaz S, Boots AM, Walgreen B, di Padova FE, Nicklin MJ, Joosten LA, van den Berg WB. Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum. 2008; 58:3461–3470.
Article
18. Shaw M, Kamada N, Kim YG, Núñez G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med. 2012; 209:251–258.
Article
19. Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S, Llop-Guevara A, Shen P, Gordon ME, Barra NG, Bassett JD, Kong J, Fattouh R, McCoy KD, Bowdish DM, Erjefält JS, Pabst O, Humbles AA, Kolbeck R, Waserman S, Jordana M. Indigenous enteric eosinophils contraol DCs to initiate a primary Th2 immune response in vivo. J Exp Med. 2014; 211:1657–1672.
Article
20. El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011; 12:568–575.
Article
21. Griseri T, Arnold IC, Pearson C, Krausgruber T, Schiering C, Franchini F, Schulthess J, McKenzie BS, Crocker PR, Powrie F. Granulocyte macrophage colony-stimulating factor-activated eosinophils promote interleukin-23 drive chronic colitis. Immunity. 2015; 43:187–199.
Article
22. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol. 2010; 28:243–273.
Article
23. Cazac BB, Roes J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000; 13:443–451.
Article
24. Dullaers M, Li D, Xue Y, Ni L, Gayet I, Morita R, Ueno H, Palucka KA, Banchereau J, Oh S. A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. Immunity. 2009; 30:120–129.
Article
25. Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M, Muehlinghaus G, Szyska M, Radbruch A, Manz RA. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol. 2003; 171:1684–1690.
Article
26. Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ, Löhning M, Berek C. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol. 2011; 12:151–159.
Article
27. Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH, Chaplin DD, Lee EH, Jang MH, Woo SY, Seoh JY, Miyasaka M, Rothenberg ME. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 2015; 8:930–942.
Article
28. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008; 14:949–953.
Article
29. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011; 11:98–107.
Article
30. Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016; 12:15–28.
Article
31. Molofsky AB, Nussbaum JC, Liang HE, Dyken SJV, Cheng LE, Mohapatra A, Chawla A, Lacksley RM. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013; 210:535–549.
Article
32. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P, Artis D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015; 519:242–246.
Article
33. Lee SD, Tontonoz P. Eosinophils in fat: pink is the new brown. Cell. 2014; 157:1249–1250.
Article
34. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013; 19:1252–1263.
Article
35. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014; 10:24–36.
Article
36. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachery J, Gygi S, Seehra J, Hawley JA, Spiegelman BM. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014; 157:1279–1291.
Article
37. Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 2016; 23:413–426.
Article
38. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444:1027–1031.
Article
39. Suárez-Zamorano N, Fabbiano S, Chevalier C, Stojanović O, Colin DJ, Stevanović A, Veyrat-Durebex C, Tarallo V, Rigo D, Germain S, Ilievska M, Montet X, Seimbille Y, Hapfelmeier S, Trajkovski M. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015; 21:1497–1501.
Article
40. Lee HS, Jang MS, Kim JH, Hong CP, Lee EJ, Jeun EJ, Kim C, Kim EK, Ahn KS, Yang BG, Ahn KS, Jang YP, Ahn KS, Kim YM, Jang MH. Ulmus davidiana var. japonica Nakai upregulates eosinophils and suppresses Th1 and Th17 cells in the small intestine. PLoS One. 2013; 8:e76716.
Article
Full Text Links
  • IN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr