Endocrinol Metab.  2016 Sep;31(3):361-372. 10.3803/EnM.2016.31.3.361.

Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss

Affiliations
  • 1Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. cmantzor@bidmc.harvard.edu

Abstract

Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss.

Keyword

Ghrelin; Peptide tyrosine-tyrosine; Islet amyloid polypeptide; Gastric inhibitory polypeptide; Fibroblast growth factor 21; Chemerin; Irisin

MeSH Terms

Appetite
Bile Acids and Salts
Diet
Energy Intake
Energy Metabolism
Fibroblast Growth Factors
Gastric Inhibitory Polypeptide
Ghrelin
Heme Oxygenase-1
Homeostasis*
Incretins
Islet Amyloid Polypeptide
Obesity
Physiology*
Weight Loss*
Bile Acids and Salts
Fibroblast Growth Factors
Gastric Inhibitory Polypeptide
Ghrelin
Heme Oxygenase-1
Incretins
Islet Amyloid Polypeptide

Reference

1. Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000; 1492:203–206. PMID: 10858549.
Article
2. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005; 115:1627–1635. PMID: 15902306.
Article
3. Stein S, Stepan H, Kratzsch J, Verlohren M, Verlohren HJ, Drynda K, et al. Serum fibroblast growth factor 21 levels in gestational diabetes mellitus in relation to insulin resistance and dyslipidemia. Metabolism. 2010; 59:33–37. PMID: 19699495.
Article
4. Mai K, Schwarz F, Bobbert T, Andres J, Assmann A, Pfeiffer AF, et al. Relation between fibroblast growth factor-21, adiposity, metabolism, and weight reduction. Metabolism. 2011; 60:306–311. PMID: 20362303.
Article
5. Liu J, Xu Y, Hu Y, Wang G. The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism. 2015; 64:380–390. PMID: 25516477.
Article
6. Lee J, Hong SW, Park SE, Rhee EJ, Park CY, Oh KW, et al. Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis. Metabolism. 2014; 63:1041–1048. PMID: 24933399.
Article
7. Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A, et al. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism. 2014; 63:312–317. PMID: 24369918.
Article
8. Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 2009; 150:4931–4940. PMID: 19819944.
Article
9. Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008; 57:1246–1253. PMID: 18252893.
Article
10. Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010; 59:2781–2789. PMID: 20682689.
Article
11. Bužga M, Evžen M, Pavel K, Tomáš K, Vladislava Z, Pavel Z, et al. Effects of the intragastric balloon MedSil on weight loss, fat tissue, lipid metabolism, and hormones involved in energy balance. Obes Surg. 2014; 24:909–915. PMID: 24488758.
Article
12. Haluzikova D, Lacinova Z, Kavalkova P, Drapalova J, Krizova J, Bartlova M, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity (Silver Spring). 2013; 21:1335–1342. PMID: 23670968.
13. Lips MA, de Groot GH, Berends FJ, Wiezer R, van Wagensveld BA, Swank DJ, et al. Calorie restriction and Roux-en-Y gastric bypass have opposing effects on circulating FGF21 in morbidly obese subjects. Clin Endocrinol (Oxf). 2014; 81:862–870. PMID: 24841294.
Article
14. Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014; 20:670–677. PMID: 25130400.
Article
15. Bielohuby M, Menhofer D, Kirchner H, Stoehr BJ, Muller TD, Stock P, et al. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab. 2011; 300:E65–E76. PMID: 20943751.
Article
16. Douris N, Melman T, Pecherer JM, Pissios P, Flier JS, Cantley LC, et al. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys Acta. 2015; 1852(10 Pt A):2056–2065. PMID: 26170063.
Article
17. Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014; 124:3913–3922. PMID: 25133427.
Article
18. Muller TD, Tschop MH. Play down protein to play up metabolism? J Clin Invest. 2014; 124:3691–3693. PMID: 25133420.
19. Garcia-Caraballo SC, Comhair TM, Verheyen F, Gaemers I, Schaap FG, Houten SM, et al. Prevention and reversal of hepatic steatosis with a high-protein diet in mice. Biochim Biophys Acta. 2013; 1832:685–695. PMID: 23410526.
Article
20. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010; 139:456–463. PMID: 20451522.
Article
21. Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet. 2013; 22:1895–1902. PMID: 23372041.
Article
22. Tanaka T, Ngwa JS, van Rooij FJ, Zillikens MC, Wojczynski MK, Frazier-Wood AC, et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr. 2013; 97:1395–1402. PMID: 23636237.
Article
23. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med. 2003; 198:977–985. PMID: 14530373.
Article
24. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007; 148:4687–4694. PMID: 17640997.
Article
25. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007; 282:28175–28188. PMID: 17635925.
Article
26. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes. 2009; 58:2731–2740. PMID: 19720798.
Article
27. Mussig K, Staiger H, Machicao F, Thamer C, Machann J, Schick F, et al. RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism. 2009; 58:519–524. PMID: 19303973.
Article
28. Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016; 65:1062–1079. PMID: 26725002.
Article
29. Bao W, Baecker A, Song Y, Kiely M, Liu S, Zhang C. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism. 2015; 64:756–764. PMID: 25749468.
Article
30. Aronis KN, Sahin-Efe A, Chamberland JP, Spiro A 3rd, Vokonas P, Mantzoros CS. Chemerin levels as predictor of acute coronary events: a case-control study nested within the veterans affairs normative aging study. Metabolism. 2014; 63:760–766. PMID: 24684821.
Article
31. Lehrke M, Becker A, Greif M, Stark R, Laubender RP, von Ziegler F, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol. 2009; 161:339–344. PMID: 19497986.
Article
32. Tonjes A, Fasshauer M, Kratzsch J, Stumvoll M, Bluher M. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One. 2010; 5:e13911. PMID: 21085476.
Article
33. Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2010; 95:2892–2896. PMID: 20375212.
Article
34. Ress C, Tschoner A, Engl J, Klaus A, Tilg H, Ebenbichler CF, et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest. 2010; 40:277–280. PMID: 20105226.
Article
35. Lee MK, Chu SH, Lee DC, An KY, Park JH, Kim DI, et al. The association between chemerin and homeostasis assessment of insulin resistance at baseline and after weight reduction via lifestyle modifications in young obese adults. Clin Chim Acta. 2013; 421:109–115. PMID: 23485648.
Article
36. Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavalda JM, Hernandez M, et al. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2013; 23:1790–1798. PMID: 23832521.
Article
37. Chakaroun R, Raschpichler M, Kloting N, Oberbach A, Flehmig G, Kern M, et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism. 2012; 61:706–714. PMID: 22136911.
Article
38. Chamberland JP, Berman RL, Aronis KN, Mantzoros CS. Chemerin is expressed mainly in pancreas and liver, is regulated by energy deprivation, and lacks day/night variation in humans. Eur J Endocrinol. 2013; 169:453–462. PMID: 23904282.
Article
39. Kim SH, Lee SH, Ahn KY, Lee DH, Suh YJ, Cho SG, et al. Effect of lifestyle modification on serum chemerin concentration and its association with insulin sensitivity in overweight and obese adults with type 2 diabetes. Clin Endocrinol (Oxf). 2014; 80:825–833. PMID: 23682797.
Article
40. Parlee SD, Wang Y, Poirier P, Lapointe M, Martin J, Bastien M, et al. Biliopancreatic diversion with duodenal switch modifies plasma chemerin in early and late post-operative periods. Obesity (Silver Spring). 2015; 23:1201–1208. PMID: 25959026.
Article
41. Bluher M, Rudich A, Kloting N, Golan R, Henkin Y, Rubin E, et al. Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care. 2012; 35:342–349. PMID: 22190676.
Article
42. Khoo J, Dhamodaran S, Chen DD, Yap SY, Chen RY, Tian RH. Exercise-induced weight loss is more effective than dieting for improving adipokine profile, insulin resistance, and inflammation in obese men. Int J Sport Nutr Exerc Metab. 2015; 25:566–575. PMID: 26011919.
Article
43. Tabesh M, Hosseinzadeh MJ, Tabesh M, Esmaillzadeh A. Effects of dietary energy density on serum adipocytokine levels in diabetic women. Horm Metab Res. 2013; 45:834–839. PMID: 23979789.
Article
44. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fatlike development of white fat and thermogenesis. Nature. 2012; 481:463–468. PMID: 22237023.
Article
45. Brondani LA, Boelter G, Assmann TS, Leitao CB, Canani LH, Crispim D. Irisin-encoding gene (FNDC5) variant is associated with changes in blood pressure and lipid profile in type 2 diabetic women but not in men. Metabolism. 2015; 64:952–957. PMID: 26024756.
Article
46. Huh JY, Mantzoros CS. Irisin physiology, oxidative stress, and thyroid dysfunction: what next. Metabolism. 2015; 64:765–767. PMID: 25916681.
Article
47. Huh JY, Mougios V, Skraparlis A, Kabasakalis A, Mantzoros CS. Irisin in response to acute and chronic whole-body vibration exercise in humans. Metabolism. 2014; 63:918–921. PMID: 24814685.
Article
48. Moon HS, Mantzoros CS. Regulation of cell proliferation and malignant potential by irisin in endometrial, colon, thyroid and esophageal cancer cell lines. Metabolism. 2014; 63:188–193. PMID: 24268368.
Article
49. Panagiotou G, Mu L, Na B, Mukamal KJ, Mantzoros CS. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism. 2014; 63:1265–1271. PMID: 25060690.
Article
50. Polyzos SA, Mantzoros CS. An update on the validity of irisin assays and the link between irisin and hepatic metabolism. Metabolism. 2015; 64:937–942. PMID: 26130607.
Article
51. Tsuchiya Y, Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015; 64:1042–1050. PMID: 26081427.
Article
52. Polyzos SA, Mathew H, Mantzoros CS. Irisin: a true, circulating hormone. Metabolism. 2015; 64:1611–1618. PMID: 26422316.
Article
53. Joung KE, Park KH, Filippaios A, Dincer F, Christou H, Mantzoros CS. Cord blood irisin levels are positively correlated with birth weight in newborn infants. Metabolism. 2015; 64:1507–1514. PMID: 26303870.
Article
54. Baka S, Malamitsi-Puchner A, Boutsikou T, Boutsikou M, Marmarinos A, Hassiakos D, et al. Cord blood irisin at the extremes of fetal growth. Metabolism. 2015; 64:1515–1520. PMID: 26307660.
Article
55. Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS. Irisin in patients with nonalcoholic fatty liver disease. Metabolism. 2014; 63:207–217. PMID: 24140091.
Article
56. Bostrom PA, Fernandez-Real JM, Mantzoros C. Irisin in humans: recent advances and questions for future research. Metabolism. 2014; 63:178–180. PMID: 24342075.
Article
57. Crujeiras AB, Zulet MA, Lopez-Legarrea P, de la Iglesia R, Pardo M, Carreira MC, et al. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism. 2014; 63:520–531. PMID: 24439241.
Article
58. Samy DM, Ismail CA, Nassra RA. Circulating irisin concentrations in rat models of thyroid dysfunction: effect of exercise. Metabolism. 2015; 64:804–813. PMID: 25720940.
59. Crujeiras AB, Pardo M, Casanueva FF. Irisin: 'fat' or artefact. Clin Endocrinol (Oxf). 2015; 82:467–474. PMID: 25287317.
Article
60. Raschke S, Eckel J. Adipo-myokines: two sides of the same coin: mediators of inflammation and mediators of exercise. Mediators Inflamm. 2013; 2013:320724. PMID: 23861558.
61. Elsen M, Raschke S, Eckel J. Browning of white fat: does irisin play a role in humans? J Endocrinol. 2014; 222:R25–R38. PMID: 24781257.
Article
62. Hofmann T, Elbelt U, Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis: a critical update. Peptides. 2014; 54:89–100. PMID: 24472856.
63. Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA, et al. Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutr Diabetes. 2014; 4:e110. PMID: 24567125.
Article
64. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012; 61:1725–1738. PMID: 23018146.
Article
65. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013; 98:E769–E778. PMID: 23436919.
Article
66. Huh JY, Siopi A, Mougios V, Park KH, Mantzoros CS. Irisin in response to exercise in humans with and without metabolic syndrome. J Clin Endocrinol Metab. 2015; 100:E453–E457. PMID: 25514098.
Article
67. Pardo M, Crujeiras AB, Amil M, Aguera Z, Jimenez-Murcia S, Banos R, et al. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol. 2014; 2014:857270. PMID: 24864142.
Article
68. Swick AG, Orena S, O'Connor A. Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat free mass. Metabolism. 2013; 62:1070–1073. PMID: 23578923.
Article
69. Crujeiras AB, Pardo M, Arturo RR, Navas-Carretero S, Zulet MA, Martinez JA, et al. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol. 2014; 26:198–207. PMID: 24375850.
Article
70. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity: correlation with body mass index. Peptides. 2013; 39:125–130. PMID: 23219488.
71. Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014; 63:514–525. PMID: 24150604.
Article
72. de la Iglesia R, Lopez-Legarrea P, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA, et al. Plasma irisin depletion under energy restriction is associated with improvements in lipid profile in metabolic syndrome patients. Clin Endocrinol (Oxf). 2014; 81:306–311. PMID: 24325584.
Article
73. Crujeiras AB, Zulet MA, Abete I, Amil M, Carreira MC, Martinez JA, et al. Interplay of atherogenic factors, protein intake and betatrophin levels in obese-metabolic syndrome patients treated with hypocaloric diets. Int J Obes (Lond). 2016; 40:403–410. PMID: 26443337.
Article
74. Quinones M, Folgueira C, Sanchez-Rebordelo E, Al-Massadi O. Circulating irisin levels are not regulated by nutritional status, obesity, or leptin levels in rodents. Mediators Inflamm. 2015; 2015:620919. PMID: 26568663.
75. Ko BJ, Park KH, Shin S, Zaichenko L, Davis CR, Crowell JA, et al. Diet quality and diet patterns in relation to circulating cardiometabolic biomarkers. Clin Nutr. 2016; 35:484–490. PMID: 25912185.
Article
76. Anastasilakis AD, Polyzos SA, Saridakis ZG, Kynigopoulos G, Skouvaklidou EC, Molyvas D, et al. Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J Clin Endocrinol Metab. 2014; 99:3247–3255. PMID: 24915120.
Article
77. Park KH, Zaichenko L, Peter P, Davis CR, Crowell JA, Mantzoros CS. Diet quality is associated with circulating C-reactive protein but not irisin levels in humans. Metabolism. 2014; 63:233–241. PMID: 24315778.
Article
78. Huerta AE, Prieto-Hontoria PL, Fernandez-Galilea M, Sainz N, Cuervo M, Martinez JA, et al. Circulating irisin and glucose metabolism in overweight/obese women: effects of α-lipoic acid and eicosapentaenoic acid. J Physiol Biochem. 2015; 71:547–558. PMID: 25820474.
Article
79. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003; 116(Pt 13):2627–2634. PMID: 12775774.
Article
80. Ehrlund A, Mejhert N, Lorente-Cebrian S, Astrom G, Dahlman I, Laurencikiene J, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. J Clin Endocrinol Metab. 2013; 98:E503–E508. PMID: 23393180.
Article
81. Mastaitis J, Eckersdorff M, Min S, Xin Y, Cavino K, Aglione J, et al. Loss of SFRP4 alters body size, food intake, and energy expenditure in diet-induced obese male mice. Endocrinology. 2015; 156:4502–4510. PMID: 26406932.
Article
82. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006; 439:484–489. PMID: 16400329.
Article
83. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014; 509:183–188. PMID: 24670636.
Article
84. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012; 153:3613–3619. PMID: 22673227.
Article
85. Gao F, Zhang X, Zhou L, Zhou S, Zheng Y, Yu J, et al. Type 2 diabetes mitigation in the diabetic Goto-Kakizaki rat by elevated bile acids following a common-bile-duct surgery. Metabolism. 2016; 65:78–88. PMID: 26773931.
Article
86. Prinz P, Hofmann T, Ahnis A, Elbelt U, Goebel-Stengel M, Klapp BF, et al. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front Neurosci. 2015; 9:199. PMID: 26089773.
Article
87. Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab. 2015; 100:E1225–E1233. PMID: 26196952.
Article
88. Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2015; 12. 10. [Epub]. DOI: 10.1097/SLA.0000000000001552.
Article
89. Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism. 2009; 58:1400–1407. PMID: 19570554.
Article
90. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009; 17:1671–1677. PMID: 19360006.
Article
91. Nyhlin H, Brydon G, Danielsson A, Eriksson F. Bile acid malabsorption after intestinal bypass surgery for obesity: a comparison between jejunoileal shunt and biliointestinal bypass. Int J Obes. 1990; 14:47–55. PMID: 2312216.
92. Simonen M, Dali-Youcef N, Kaminska D, Venesmaa S, Kakela P, Paakkonen M, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes Surg. 2012; 22:1473–1480. PMID: 22638681.
Article
93. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013; 98:E708–E712. PMID: 23457410.
Article
94. Trouillot TE, Pace DG, McKinley C, Cockey L, Zhi J, Haeussler J, et al. Orlistat maintains biliary lipid composition and hepatobiliary function in obese subjects undergoing moderate weight loss. Am J Gastroenterol. 2001; 96:1888–1894. PMID: 11421247.
Article
95. Kudchodkar BJ, Sodhi HS, Mason DT, Borhani NO. Effects of acute caloric restriction on cholesterol metabolism in man. Am J Clin Nutr. 1977; 30:1135–1146. PMID: 879078.
Article
96. Raymond F, Wang L, Moser M, Metairon S, Mansourian R, Zwahlen MC, et al. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet. PLoS One. 2012; 7:e49058. PMID: 23139832.
Article
97. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505:559–563. PMID: 24336217.
Article
98. Thorning TK, Raziani F, Bendsen NT, Astrup A, Tholstrup T, Raben A. Diets with high-fat cheese, high-fat meat, or carbohydrate on cardiovascular risk markers in overweight postmenopausal women: a randomized crossover trial. Am J Clin Nutr. 2015; 102:573–581. PMID: 26178720.
Article
99. Reddy BS, Engle A, Simi B, O'Brien LT, Barnard RJ, Pritikin N, et al. Effect of low-fat, high-carbohydrate, high-fiber diet on fecal bile acids and neutral sterols. Prev Med. 1988; 17:432–439. PMID: 2851138.
Article
100. Martucci CP, Miller DG, Levine B, Tint GS, Fishman J. Changes in serum bile acids in normal human subjects following the adoption of a low-fat diet. Ann N Y Acad Sci. 1995; 768:331–333. PMID: 8526380.
Article
101. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006; 86:583–650. PMID: 16601269.
Article
102. Zheng Y, Toborek M, Hennig B. Epigallocatechin gallate-mediated protection against tumor necrosis factor-α-induced monocyte chemoattractant protein-1 expression is heme oxygenase-1 dependent. Metabolism. 2010; 59:1528–1535. PMID: 20580034.
Article
103. Shakeri-Manesch S, Zeyda M, Huber J, Ludvik B, Prager G, Stulnig TM. Diminished upregulation of visceral adipose heme oxygenase-1 correlates with waist-to-hip ratio and insulin resistance. Int J Obes (Lond). 2009; 33:1257–1264. PMID: 19687791.
Article
104. Jais A, Einwallner E, Sharif O, Gossens K, Lu TT, Soyal SM, et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell. 2014; 158:25–40. PMID: 24995976.
Article
105. Galbraith RA, Kappas A. Regulation of food intake and body weight by cobalt porphyrins in animals. Proc Natl Acad Sci U S A. 1989; 86:7653–7657. PMID: 2798429.
Article
106. Peterson SJ, Drummond G, Kim DH, Li M, Kruger AL, Ikehara S, et al. L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res. 2008; 49:1658–1669. PMID: 18426778.
Article
107. Galbraith RA, Kappas A. Intracerebroventricular administration of cobalt protoporphyrin elicits prolonged weight reduction in rats. Am J Physiol. 1991; 261(6 Pt 2):R1395–R1401. PMID: 1750564.
Article
108. Galbraith RA, Kow LM, Pfaff D, Kappas A. Injection of cobalt protoporphyrin into the medial nuclei of the hypothalamus elicits weight loss. Am J Physiol. 1992; 263(4 Pt 2):R805–R812. PMID: 1415792.
Article
109. Hosick PA, AlAmodi AA, Storm MV, Gousset MU, Pruett BE, Gray W 3rd, et al. Chronic carbon monoxide treatment attenuates development of obesity and remodels adipocytes in mice fed a high-fat diet. Int J Obes (Lond). 2014; 38:132–139. PMID: 23689359.
Article
110. Li M, Kim DH, Tsenovoy PL, Peterson SJ, Rezzani R, Rodella LF, et al. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes. 2008; 57:1526–1535. PMID: 18375438.
Article
111. Chakrabarty A, Emerson MR, LeVine SM. Heme oxygenase-1 in SJL mice with experimental allergic encephalomyelitis. Mult Scler. 2003; 9:372–381. PMID: 12926842.
112. Csongradi E, Docarmo JM, Dubinion JH, Vera T, Stec DE. Chronic HO-1 induction with cobalt protoporphyrin (CoPP) treatment increases oxygen consumption, activity, heat production and lowers body weight in obese melanocortin-4 receptor-deficient mice. Int J Obes (Lond). 2012; 36:244–253. PMID: 21467998.
Article
113. Tu TH, Joe Y, Choi HS, Chung HT, Yu R. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching. Mediators Inflamm. 2014; 2014:290708. PMID: 25477711.
Article
114. Abraham NG, Sodhi K, Silvis AM, Vanella L, Favero G, Rezzani R, et al. CYP2J2 targeting to endothelial cells attenuates adiposity and vascular dysfunction in mice fed a high-fat diet by reprogramming adipocyte phenotype. Hypertension. 2014; 64:1352–1361. PMID: 25245389.
Article
115. Cao J, Peterson SJ, Sodhi K, Vanella L, Barbagallo I, Rodella LF, et al. Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet. Hypertension. 2012; 60:467–475. PMID: 22753217.
Article
116. Tuzcu M, Sahin N, Orhan C, Agca CA, Akdemir F, Tuzcu Z, et al. Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab (Lond). 2011; 8:28. PMID: 21539728.
Article
117. Huang JY, Chiang MT, Chau LY. Adipose overexpression of heme oxygenase-1 does not protect against high fat diet-induced insulin resistance in mice. PLoS One. 2013; 8:e55369. PMID: 23390531.
Article
118. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001; 86:5992. PMID: 11739476.
Article
119. Mishra AK, Dubey V, Ghosh AR. Obesity: an overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism. 2016; 65:48–65. PMID: 26683796.
Article
120. Shimada T, Furuta H, Doi A, Ariyasu H, Kawashima H, Wakasaki H, et al. Des-acyl ghrelin protects microvascular endothelial cells from oxidative stress-induced apoptosis through sirtuin 1 signaling pathway. Metabolism. 2014; 63:469–474. PMID: 24486147.
Article
121. Wang L, Li G, Chen Q, Ke D. Octanoylated ghrelin attenuates angiogenesis induced by oxLDL in human coronary artery endothelial cells via the GHSR1a-mediated NF-κB pathway. Metabolism. 2015; 64:1262–1271. PMID: 26277200.
Article
122. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001; 50:1714–1719. PMID: 11473029.
Article
123. Callahan HS, Cummings DE, Pepe MS, Breen PA, Matthys CC, Weigle DS. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J Clin Endocrinol Metab. 2004; 89:1319–1324. PMID: 15001628.
Article
124. Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002; 87:240–244. PMID: 11788653.
Article
125. Zwirska-Korczala K, Konturek SJ, Sodowski M, Wylezol M, Kuka D, Sowa P, et al. Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J Physiol Pharmacol. 2007; 58(Suppl 1):13–35. PMID: 17443025.
126. le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005; 90:1068–1071. PMID: 15522935.
Article
127. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003; 349:941–948. PMID: 12954742.
Article
128. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002; 346:1623–1630. PMID: 12023994.
Article
129. Hansen TK, Dall R, Hosoda H, Kojima M, Kangawa K, Christiansen JS, et al. Weight loss increases circulating levels of ghrelin in human obesity. Clin Endocrinol (Oxf). 2002; 56:203–206. PMID: 11874411.
Article
130. Overduin J, Frayo RS, Grill HJ, Kaplan JM, Cummings DE. Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology. 2005; 146:845–850. PMID: 15528308.
Article
131. Murray CD, le Roux CW, Gouveia C, Bassett P, Ghatei MA, Bloom SR, et al. The effect of different macronutrient infusions on appetite, ghrelin and peptide YY in parenterally fed patients. Clin Nutr. 2006; 25:626–633. PMID: 16698143.
Article
132. Koliaki C, Kokkinos A, Tentolouris N, Katsilambros N. The effect of ingested macronutrients on postprandial ghrelin response: a critical review of existing literature data. Int J Pept. 2010; 2010:710852. PMID: 20798765.
Article
133. van der Klaauw AA, Keogh JM, Henning E, Trowse VM, Dhillo WS, Ghatei MA, et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring). 2013; 21:1602–1607. PMID: 23666746.
Article
134. Gibbons C, Caudwell P, Finlayson G, Webb DL, Hellstrom PM, Naslund E, et al. Comparison of postprandial profiles of ghrelin, active GLP-1, and total PYY to meals varying in fat and carbohydrate and their association with hunger and the phases of satiety. J Clin Endocrinol Metab. 2013; 98:E847–E855. PMID: 23509106.
Article
135. le Roux CW, Bloom SR. Peptide YY, appetite and food intake. Proc Nutr Soc. 2005; 64:213–216. PMID: 15960866.
Article
136. Michalakis K, Goulis DG, Vazaiou A, Mintziori G, Polymeris A, Abrahamian-Michalakis A. Obesity in the ageing man. Metabolism. 2013; 62:1341–1349. PMID: 23831443.
Article
137. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006; 147:3–8. PMID: 16166213.
Article
138. Sodowski K, Zwirska-Korczala K, Kuka D, Kukla M, Budziszewska P, Czuba B, et al. Basal and postprandial gut peptides affecting food intake in lean and obese pregnant women. J Physiol Pharmacol. 2007; 58(Suppl 1):37–52. PMID: 17443026.
139. Cahill F, Ji Y, Wadden D, Amini P, Randell E, Vasdev S, et al. The association of serum total peptide YY (PYY) with obesity and body fat measures in the CODING study. PLoS One. 2014; 9:e95235. PMID: 24743402.
Article
140. Pfluger PT, Kampe J, Castaneda TR, Vahl T, D'Alessio DA, Kruthaupt T, et al. Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36. J Clin Endocrinol Metab. 2007; 92:583–588. PMID: 17119001.
Article
141. Cahill F, Shea JL, Randell E, Vasdev S, Sun G. Serum peptide YY in response to short-term overfeeding in young men. Am J Clin Nutr. 2011; 93:741–747. PMID: 21289220.
Article
142. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011; 365:1597–1604. PMID: 22029981.
Article
143. Moran LJ, Noakes M, Clifton PM, Wittert GA, Le Roux CW, Ghatei MA, et al. Postprandial ghrelin, cholecystokinin, peptide YY, and appetite before and after weight loss in overweight women with and without polycystic ovary syndrome. Am J Clin Nutr. 2007; 86:1603–1610. PMID: 18065576.
Article
144. McNeil J, Schwartz A, Rabasa-Lhoret R, Lavoie JM, Brochu M, Doucet E. Changes in leptin and peptide YY do not explain the greater-than-predicted decreases in resting energy expenditure after weight loss. J Clin Endocrinol Metab. 2015; 100:E443–E452. PMID: 25494860.
Article
145. Lewis HB, Ahern AL, Solis-Trapala I, Walker CG, Reimann F, Gribble FM, et al. Effect of reducing portion size at a compulsory meal on later energy intake, gut hormones, and appetite in overweight adults. Obesity (Silver Spring). 2015; 23:1362–1370. PMID: 26054049.
Article
146. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006; 4:223–233. PMID: 16950139.
Article
147. Helou N, Obeid O, Azar ST, Hwalla N. Variation of postprandial PYY 3-36 response following ingestion of differing macronutrient meals in obese females. Ann Nutr Metab. 2008; 52:188–195. PMID: 18544972.
148. El Khoury D, El-Rassi R, Azar S, Hwalla N. Postprandial ghrelin and PYY responses of male subjects on low carbohydrate meals to varied balancing proportions of proteins and fats. Eur J Nutr. 2010; 49:493–500. PMID: 20396896.
Article
149. Cooper JA. Factors affecting circulating levels of peptide YY in humans: a comprehensive review. Nutr Res Rev. 2014; 27:186–197. PMID: 24933293.
Article
150. Essah PA, Levy JR, Sistrun SN, Kelly SM, Nestler JE. Effect of macronutrient composition on postprandial peptide YY levels. J Clin Endocrinol Metab. 2007; 92:4052–4055. PMID: 17726080.
Article
151. Ludvik B, Kautzky-Willer A, Prager R, Thomaseth K, Pacini G. Amylin: history and overview. Diabet Med. 1997; 14(Suppl 2):S9–S13. PMID: 9212323.
Article
152. Lutz TA. Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets. 2005; 6:181–189. PMID: 15777188.
Article
153. Morley JE, Flood JF. Amylin decreases food intake in mice. Peptides. 1991; 12:865–869. PMID: 1788148.
Article
154. Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC. Amylin: a novel action in the brain to reduce body weight. Endocrinology. 2000; 141:850–853. PMID: 10650969.
Article
155. Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD. Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring). 2010; 18:21–26. PMID: 19543217.
Article
156. Mietlicki-Baase EG, Olivos DR, Jeffrey BA, Hayes MR. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab. 2015; 308:E1116–E1122. PMID: 25898952.
Article
157. Reda TK, Geliebter A, Pi-Sunyer FX. Amylin, food intake, and obesity. Obes Res. 2002; 10:1087–1091. PMID: 12376591.
Article
158. Dunn-Meynell AA, Le Foll C, Johnson MD, Lutz TA, Hayes MR, Levin BE. Endogenous VMH amylin signaling is required for full leptin signaling and protection from diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2016; 310:R355–R365. PMID: 26676252.
Article
159. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr. 2013; 67:759–764. PMID: 23632752.
Article
160. Eller LK, Ainslie PN, Poulin MJ, Reimer RA. Differential responses of circulating amylin to high-fat vs. high-carbohydrate meal in healthy men. Clin Endocrinol (Oxf). 2008; 68:890–897. PMID: 18031323.
Article
161. Sjolund K, Sanden G, Hakanson R, Sundler F. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983; 85:1120–1130. PMID: 6194039.
Article
162. Phillips LK, Prins JB. Update on incretin hormones. Ann N Y Acad Sci. 2011; 1243:E55–E74. PMID: 22545749.
Article
163. Geloneze B, de Oliveira Mda S, Vasques AC, Novaes FS, Pareja JC, Tambascia MA. Impaired incretin secretion and pancreatic dysfunction with older age and diabetes. Metabolism. 2014; 63:922–929. PMID: 24854384.
Article
164. de Mello AH, Pra M, Cardoso LC, de Bona Schraiber R, Rezin GT. Incretin-based therapies for obesity treatment. Metabolism. 2015; 64:967–981. PMID: 26072135.
Article
165. Flint A, Gregersen NT, Gluud LL, Moller BK, Raben A, Tetens I, et al. Associations between postprandial insulin and blood glucose responses, appetite sensations and energy intake in normal weight and overweight individuals: a meta-analysis of test meal studies. Br J Nutr. 2007; 98:17–25. PMID: 17524176.
Article
166. Edholm T, Degerblad M, Gryback P, Hilsted L, Holst JJ, Jacobsson H, et al. Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin-glucose homeostasis. Neurogastroenterol Motil. 2010; 22:1191–1200. PMID: 20584260.
Article
167. Meier JJ, Goetze O, Anstipp J, Hagemann D, Holst JJ, Schmidt WE, et al. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am J Physiol Endocrinol Metab. 2004; 286:E621–E625. PMID: 14678954.
Article
168. Jones IR, Owens DR, Luzio SD, Hayes TM. Obesity is associated with increased post-prandial GIP levels which are not reduced by dietary restriction and weight loss. Diabete Metab. 1989; 15:11–22. PMID: 2721810.
169. Weiss EP, Albert SG, Reeds DN, Kress KS, Ezekiel UR, McDaniel JL, et al. Calorie restriction and matched weight loss from exercise: independent and additive effects on glucoregulation and the incretin system in overweight women and men. Diabetes Care. 2015; 38:1253–1262. PMID: 25877812.
Article
170. Santo MA, Riccioppo D, Pajecki D, Kawamoto F, de Cleva R, Antonangelo L, et al. Weight regain after gastric bypass: influence of gut hormones. Obes Surg. 2016; 26:919–925. PMID: 26450709.
Article
171. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993; 138:159–166. PMID: 7852887.
172. Gribble FM. The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proc Nutr Soc. 2012; 71:456–462. PMID: 22906726.
Article
173. Runchey SS, Valsta LM, Schwarz Y, Wang C, Song X, Lampe JW, et al. Effect of low- and high-glycemic load on circulating incretins in a randomized clinical trial. Metabolism. 2013; 62:188–195. PMID: 22959497.
Article
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr