J Lipid Atheroscler.  2016 Jun;5(1):1-10. 10.12997/jla.2016.5.1.1.

The Role of Autophagy in the Pathogenesis of Atherosclerosis

Affiliations
  • 1Department of Life Sciences, Ewha Womans University, Seoul, Korea. gootaeg@ewha.ac.kr

Abstract

Autophagy is a life-sustaining process by which cytoplasmic constituents are segregated in double-lipid bilayer membrane vesicles and undergo degradation into lysosomes. In recent studies, the basal autophagy is an indispensable process mediating proper vascular function in the body. Moreover, autophagy activated by many stress-related stimuli in the arterial wall protects endothelial cells and smooth muscle cells against cell death and the progression of vascular disease including atherosclerosis. Autophagy is protective to atherosclerosis during early stage but becomes dysfunctional in advanced atherosclerotic lesions. Following this finding, the need is emphasized which pharmacological development with compounds that activate the protective effects of autophagy in the vascular disease. Autophagy stimulated by oral or vascular delivery of rapamycin or derivatives effectively suppressed the atherosclerotic plaque growth and plaque destabilization. In this review, the recent finding is summarized on the role of autophagy in atherosclerosis and find out whether the activation or rescue of autophagy could provide a breakthrough in the treatment of atherosclerosis.

Keyword

Autophagy; Atherosclerosis; Vascular disease

MeSH Terms

Atherosclerosis*
Autophagy*
Cell Death
Cytoplasm
Endothelial Cells
Lysosomes
Membranes
Myocytes, Smooth Muscle
Negotiating
Plaque, Atherosclerotic
Sirolimus
Vascular Diseases
Sirolimus

Figure

  • Fig. 1 The different types of autophagy. (A) Aggrephagy, (B) Mitophagy, (C) Lipophagy, (D) Xenophagy, (E) Schematic overview of the autophagic pathway.

  • Fig. 2 Potential role of autophagy in atherosclerosis. (A) Oxidative stress induced by the production of reactive oxygen species or the oxidized lipids is abundant in advanced atherosclerotic plaques. In the case of mild oxidative stress, activated autophagy promotes the removal of damaged organelles (eg, depolarized mitochondria) and contributes to cellular recovery, (B) Severe oxidative stress makes excessive cellular damage. Autophagy is not sufficient for the removal of that. Depolarized mitochondria release apoptosis inducer such as cytochrome c. Lysosome membrane damage results in cytosolic leakage of hydrolases, which could cause substantial cytosolic damage followed by apoptosis. Moreover, formation of ceroid that cannot be degraded by lysosomal hydrolases lead to preferential allocation of lysosomal enzymes to ceroid-loaded lysosomes at the expense of active autolysosomes which, in turn, would lead to the autophagy inhibition followed by apoptosis.


Reference

1. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147:728–741.
Article
2. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014; 24:24–41.
Article
3. Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014; 16:495–501.
Article
4. Martinet W, De Meyer GR. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res. 2009; 104:304–317.
5. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012; 11:709–730.
Article
6. Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J Pathol. 2012; 226:255–273.
Article
7. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013; 368:651–662.
Article
8. Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014; 24:69–79.
Article
9. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008; 321:117–120.
Article
10. Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle. 2012; 11:2092–2099.
11. Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy. 2011; 7:727–736.
Article
12. Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA, et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med. 2013; 19:1281–1287.
Article
13. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009; 458:1131–1135.
Article
14. Ichimura Y, Komatsu M. Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. Exp Anim. 2011; 60:329–345.
Article
15. Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J, Hill JA. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy. 2013; 9:1455–1466.
16. Clarke PG, Puyal J. Autophagic cell death exists. Autophagy. 2012; 8:867–869.
Article
17. Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A. 2013; 110:20364–20371.
Article
18. Shen S, Kepp O, Kroemer G. The end of autophagic cell death. Autophagy. 2012; 8:1–3.
Article
19. Martinet W, Schrijvers DM, Timmermans JP, Bult H, De Meyer GR. Immunohistochemical analysis of macroautophagy: recommendations and limitations. Autophagy. 2013; 9:386–402.
20. Martinet W, Timmermans JP, De Meyer GR. Methods to assess autophagy in situ--transmission electron microscopy versus immunohistochemistry. Methods Enzymol. 2014; 543:89–114.
Article
21. Lusis AJ. Atherosclerosis. Nature. 2000; 407:233–241.
Article
22. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352:1685–1695.
Article
23. Kannel WB, D’Agostino RB, Sullivan L, Wilson PW. Concept and usefulness of cardiovascular risk profiles. Am Heart J. 2004; 148:16–26.
Article
24. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012; 111:245–259.
25. Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation. 2006; 114:2390–2411.
Article
26. Schrijvers DM, De Meyer GR, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011; 31:2787–2791.
27. Martinet W, De Meyer I, Verheye S, Schrijvers DM, Timmermans JP, De Meyer GR. Drug-induced macrophage autophagy in atherosclerosis: for better or worse? Basic Res Cardiol. 2013; 108:321.
Article
28. Martinet W, De Loof H, De Meyer GR. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis. 2014; 233:601–607.
Article
29. Levine B, Yuan J. Autophagy in cell death: an innocent convict. J Clin Invest. 2005; 115:2679–2688.
Article
30. Kiffin R, Bandyopadhyay U, Cuervo AM. Oxidative stress and autophagy. Antioxid Redox Signal. 2006; 8:152–162.
Article
31. Martinet W, Schrijvers DM, Timmermans JP, Bult H. Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol. 2008; 154:1236–1246.
Article
32. Pan M, Maitin V, Parathath S, Andreo U, Lin SX, St Germain C, et al. Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: a pathway for late-stage quality control. Proc Natl Acad Sci U S A. 2008; 105:5862–5867.
Article
33. Fisher EA, Pan M, Chen X, Wu X, Wang H, Jamil H, et al. The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. J Biol Chem. 2001; 276:27855–27863.
34. Sparks JD, Phung TL, Bolognino M, Sparks CE. Insulin-mediated inhibition of apolipoprotein B secretion requires an intracellular trafficking event and phosphatidylinositol 3-kinase activation: studies with brefeldin A and wortmannin in primary cultures of rat hepatocytes. Biochem J. 1996; 313:567–574.
Article
35. Pan M, Cederbaum AI, Zhang YL, Ginsberg HN, Williams KJ, Fisher EA. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest. 2004; 113:1277–1287.
Article
36. von Schacky C. The role of omega-3 fatty acids in cardiovascular disease. Curr Atheroscler Rep. 2003; 5:139–145.
Article
37. Mitchinson MJ. Insoluble lipids in human atherosclerotic plaques. Atherosclerosis. 1982; 45:11–15.
Article
38. Kurz T, Terman A, Brunk UT. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys. 2007; 462:220–230.
Article
39. Brunk UT, Jones CB, Sohal RS. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res. 1992; 275:395–403.
Article
40. Lee FY, Lee TS, Pan CC, Huang AL, Chau LY. Colocalization of iron and ceroid in human atherosclerotic lesions. Atherosclerosis. 1998; 138:281–288.
Article
41. Yuan XM, Li W, Brunk UT, Dalen H, Chang YH, Sevanian A. Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med. 2000; 28:208–218.
Article
42. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy. 2005; 1:66–74.
Article
43. Lusis AJ. Atherosclerosis. Nature. 2000; 407:233–241.
Article
44. Porter NA. Chemistry of lipid peroxidation. Methods Enzymol. 1984; 105:273–282.
45. Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J. 2008; 410:525–534.
Article
46. Bardag-Gorce F, Li J, French BA, French SW. The effect of ethanol-induced CYP2E1 on proteasome activity: the role of 4-hydroxynonenal. Exp Mol Pathol. 2005; 78:109–115.
Article
47. Nowicki M, Zabirnyk O, Duerrschmidt N, Borlak J, Spanel-Borowski K. No upregulation of lectin-like oxidized low-density lipoprotein receptor-1 in serumdeprived EA.hy926 endothelial cells under oxLDL exposure, but increase in autophagy. Eur J Cell Biol. 2007; 86:605–616.
Article
48. Martinet W, De Bie M, Schrijvers DM, De Meyer GR, Herman AG, Kockx MM. 7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004; 24:2296–2301.
Article
49. Martinet W, Schrijvers DM, De Meyer GR, Thielemans J, Knaapen MW, Herman AG, et al. Gene expression profiling of apoptosis-related genes in human atherosclerosis: upregulation of death-associated protein kinase. Arterioscler Thromb Vasc Biol. 2002; 22:2023–2029.
Article
50. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol. 2002; 157:455–468.
Article
51. Jin Y, Gallagher PJ. Antisense depletion of deathassociated protein kinase promotes apoptosis. J Biol Chem. 2003; 278:51587–51593.
Article
52. Zhou J, Lhoták S, Hilditch BA, Austin RC. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation. 2005; 111:1814–1821.
Article
53. Tabas I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 2004; 11:Suppl 1. S12–S16.
Article
54. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem. 2006; 281:30299–30304.
Article
55. Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stressinduced autophagy in mammalian cells. Cell Death Differ. 2008; 15:1460–1471.
Article
56. Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999; 145:33–43.
Article
57. Deretic V. Autophagy as an immune defense mechanism. Curr Opin Immunol. 2006; 18:375–382.
Article
58. Heymann D. Autophagy: a protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs. 2006; 7:443–450.
59. Jia G, Cheng G, Gangahar DM, Agrawal DK. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol. 2006; 84:448–454.
Article
60. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004; 119:753–766.
Article
61. Cromheeke KM, Kockx MM, De Meyer GR, Bosmans JM, Bult H, Beelaerts WJ, et al. Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques. Cardiovasc Res. 1999; 43:744–754.
Article
62. Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008; 51:1258–1265.
Article
63. Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy. 2008; 4:195–204.
Article
64. Brunelle JK, Chandel NS. Oxygen deprivation induced cell death: an update. Apoptosis. 2002; 7:475–482.
65. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004; 15:1101–1111.
Article
66. Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007; 3:28–31.
Article
67. Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007; 21:1621–1635.
Article
68. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998; 97:2307–2315.
Article
69. Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. Annu Rev Pathol. 2008; 3:427–455.
Article
70. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008; 451:1069–1075.
Article
71. Martinet W, Knaapen MW, Kockx MM, De Meyer GR. Autophagy in cardiovascular disease. Trends Mol Med. 2007; 13:482–491.
Article
72. Martinet W, Verheye S, De Meyer GR. Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med. 2007; 17:69–75.
Article
73. Martinet W, Schrijvers DM, Herman AG, De Meyer GR. z-VAD-fmk-induced non-apoptotic cell death of macrophages: possibilities and limitations for atherosclerotic plaque stabilization. Autophagy. 2006; 2:312–314.
Article
74. Yamawaki H, Iwai N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol. 2006; 290:C1495–C1502.
Article
Full Text Links
  • JLA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr