Asilmaz E., Cohen P., Miyazaki M., Dobrzyn P., Ueki K., Fayzikhodjaeva G., Soukas AA., Kahn CR., Ntambi JM., Socci ND., Friedman JM. Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J Clin Invest. 113:414–424. 2004.
Article
Cohen P., Ntambi JM., Friedman JM. Stearoyl-CoA desaturase-1 and the metabolic syndrome. Curr Drug Targets Immune Endocr Metabol Disord. 3:271–280. 2003.
Article
Corton JM., Gillespie JG., Hawley SA., Hardie DG. 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 229:558–565. 1995.
Article
Crawford RM., Treharne KJ., Arnaud-Dabernat S., Daniel JY., Foretz M., Viollet B., Mehta A. Understanding the molecular basis of the interaction between NDPK-A and AMPK alpha 1. Mol Cell Biol. 26:5921–5931. 2006.
Dobrzyn A., Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation. Trends Cardiovasc Med. 14:77–81. 2004.
Article
Foretz M., Ancellin N., Andreelli F., Saintillan Y., Grondin P., Kahn A., Thorens B., Vaulont S., Viollet B. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes. 54:1331–1339. 2005.
Article
Fryer LG., Parbu-Patel A., Carling D. Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside. FEBS Lett. 531:189–192. 2002.
Article
Hardie DG. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev Endocr Metab Disord. 5:119–125. 2004.
Article
Hardie DG., Carling D. The AMP-activated protein kinase. Fuel gauge of the mammalian cell? Eur J Biochem. 246:259–273. 1997.
Article
Hardie DG., Carling D., Carlson M. The amp-activated/snf1 protein kinase subfamily: Metabolic Sensors of the Eukaryotic Cell? Annu Rev Biochem. 67:821–855. 1998.
Article
Hardie DG., Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 30:1064–1070. 2002.
Article
Hardie DG., Scott JW., Pan DA., Hudson ER. M.anagement of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546:113–120. 2003.
Article
Kawano K., Hirashima T., Mori S., Kurosumi M., Saitoh Y., Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima fatty (OLETF) strain. Diabetes. 41:1422–1428. 1992.
Article
Minokoshi Y., Kim YB., Peroni OD., Fryer LG., Muller C., Carling D., Kahn BB. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 415:339–343. 2002.
Article
Muoio DM., Seefeld K., Witters LA., Coleman RA. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that glycerol-3-phosphate acyltransferase is a novel target. Biochem J. 338:783–791. 1999.
Musi N., Hayashi T., Fujii N., Hirshman MF., Witters LA., Goodyear LJ. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab. 280:E677–E684. 2001.
Article
Reiter AK., Bolster DR., Crozier SJ., Kimball SR., Jefferson LS. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab. 288:E980–E988. 2005.
Article
Pencek RR., Shearer J., Camacho RC., James FD., Lacy DB., Fueger PT., Donahue EP., Snead W., Wasserman DH. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes. 54:355–360. 2005.
Rutter GA., Xavier GDS., Leclerc I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J. 375:1–16. 2003.
Article
Saha AK., Avilucea PR., Ye JM., Assifi MM., Kraegen EW., Ruderman NB. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun. 314:580–585. 2004.
Article
Thong FS., Graham TE. The putative roles of adenosine in insulin-and exercise-mediated regulation of glucose transport and glycogen metabolism in skeletal muscle. Can J Appl Physiol. 27:152–178. 2002.
Winder WW., Hardie D. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 277:E1–10. 1999.
Winder WW., Wilson HA., Hardie DG., Rasmussen BB., Hutber CA., Call GB., Clayton RD., Conley LM., Yoon S., Zhou B. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase. A J Appl Physiol. 82:219–225. 1997.
Wojtaszewski JF., Jorgensen SB., Hellsten Y., Hardie DG., Richter EA. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes. 51:284–292. 2002.
Yamauchi T., Kamon J., Minokoshi Y., Ito Y., Waki H., Uchida S., Yamashita S., Noda M., Kita S., Ueki K., Eto K., Akanuma Y., Froguel F., Foufelle F., Ferre P., Carling D., Kimura S., Nagai R., Kahn BB., Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 8:1288–1295. 2002.
Article
Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman MF., Goodyear LJ., Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 108:1167–1174. 2001.
Article