Korean J Otolaryngol-Head Neck Surg.  2001 Nov;44(11):1133-1139.

Effect of Neurotrophins and Depolarization on Survival of Spiral Ganglion Neurons in Dissociation Cell Culture

Affiliations
  • 1Department of Otorhinolaryngolgy, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Abstract

BACKGROUND AND OBJECTIVES: Several neurotrophic factors have been shown to play an essential trophic role in the development, maintenance and regulation of neuronal function. Specific neurotrophins are currently used in clinical trials for the treatment of some neurodegenerative diseases. The purposes of this experiment were twofold. Firstly, we aimed to determine the trophic effects of BDNF, NT-3, and 25 mM K+ on auditory neurons in dissociated cultures of early postnatal spiral ganglia. Secondly, we tried to collect pure neural cells after dissociating the spiral ganglions using the immunomagnetic sorting method with one of neuronal surface antigens.
MATERIALS AND METHODS
Dissociated spiral ganglion cell cultures were pre-pared from cochleae of Sprague Dawley rats of 5-6 days old, and maintained in a neurobasal medium with modified N2 supplements. BDNF (50 ng/ml), NT-3 (50 ng/ml), and 25 mM K+ were added to the cultures, respectively. These cells were grown during the time course (24hr, 48hr, 72hr, 98hr) and stained with NF-200 to identify survival of spiral ganglion neurons. Immunomagnetic cell sorting for separation of spiral ganglion neurons in dissociated cells was carried out using the MiniMACS Separating System. Magnetically separated cells were analysed by flow cytometry.
RESULTS
Survival of the auditory neurons in the dissociated cells was significantly increased by addition of BDNF, NT-3, and 25K. The effect of 25 mM K+ on neuronal survival showed the highest in the experimental conditions. BDNF dramatically increased the neurite length compared with those under other conditions. After immunomagnetic sorting in dissociated cultures, spiral ganglion neurons were shown to contain 50% of the fluorescently labeled positive cells.
CONCLUSIONS
Neurotrophins (BDNF, NT-3) and depolarization by 25 mM K+ were essential trophic factors for postnatal auditory neurons and BDNF stimulated neuritogenesis in cultured spiral ganglion neurons. The immunomagnetic cell sorting method is not appropriate for collecting pure neural cells from the dissociated cells of spiral ganglia (50% purity).

Keyword

Neurotrophic factor; Depolarization; Spiral ganglion neuron; Dissociation culture

MeSH Terms

Antigens, Surface
Brain-Derived Neurotrophic Factor
Cell Culture Techniques*
Cochlea
Flow Cytometry
Nerve Growth Factors*
Neurites
Neurodegenerative Diseases
Neurons*
Rats, Sprague-Dawley
Ritodrine
Spiral Ganglion*
Antigens, Surface
Brain-Derived Neurotrophic Factor
Nerve Growth Factors
Ritodrine
Full Text Links
  • KJORL-HN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr