J Korean Diabetes Assoc.
2002 Aug;26(4):286-295.
Effect of Transforming Growth Factor-Induced Gene Product, beta ig-h3 on Proliferation, Migration, and Adhesion of Aortic Smooth Muscle Cells Cultured in High Glucose
- Affiliations
-
- 1Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Korea.
- 2Department of Biochemistry, Kyungpook National University, School of Medicine, Daegu, Korea.
Abstract
-
BACKGROUND: Diabetes mellitus is associated with a substantial increase in the prevalence of atherosclerotic disease. There are many factors which are involved in development of these processes. Transforming growth factor (TGF-beta) is known to be an important factor in the pathogenesis of diabetic vascular complications. TGF-beta-induced gene-h3 (beta ig-h3) is an adhesive molecule whose expression is induced by TGF-beta. Considering that TGF-beta plays an important role in diabetic complications and that beta ig-h3 is induced by TGF-beta, we hypothesized that beta ig-h3 may also play a role in the development of diabetic angiopathy. Then, we examined the effects of beta ig-h3 on biologic function of vascular smooth muscle cells (VSMCs) and potential roles of beta ig-h3 in the pathognesis of diabetic angiopathy.
METHODS
VSMCs were isolated from rat thoracic aorta. We conditioned cells with different concentration of TGF-beta or glucose. We measured TGF-beta and beta ig-h3 protein in cell supernatant by ELISA. We also examined whether TGF-beta involves in high glucose-induced beta ig-h3 expression. Finally, we did proliferation, migration, and adhesion assay to investigate biologic function of beta ig-h3 in VSMCs.
RESULTS
Our results demonstrated that TGF-beta induced beta ig-h3 expression in VSMCs in dose dependent manners. High glucose induced TGF expression as well as beta ig-h3 protein. Finally, beta ig-h3 was found to support the proliferation, migration, and adhesion of rat VSMCs.
CONCLUSION
These results suggest that high glucose-and TGF-beta-induced beta ig-h3 may play an important role in diabetic angiopathy by regulating proliferation, migration, and adhesion of VSMCs.