Tuberc Respir Dis.  1994 Jun;41(3):222-230. 10.4046/trd.1994.41.3.222.

Effects of Aminotriazole on Lung Toxicity of Paraquat Intoxicated Mice

Abstract

BACKGROUND
Paraquat, a widely used herbicide, is extremely toxic, causing multiple organ failure in humans. Paraquat especially leads to irreversible progressive pulmonary fibrosis, which is related to oxygen free radicals. However, its biochemical mechanism is not clear. Natural mechanisms that prevent damage from oxygen free radicals include changes in glutathione level, G6PDH, superoxide dismutase(SOD), catalase, and glutathione peroxidase. The authors think catalase is closely related to paraquat toxicity in the lungs METHOD: The effects of 3-amino-1,2,4-triazole(aminotriazole), a catalase inhibitor, on mice administered with paraquat were investigated. We studied the effects of aminotriazole on the survival of mice administered with paraquat, by comparing life spans between the group to which paraquat had been administered and the group to which a combination of paraquat and aminotriazole had been administered. We measured glutathion level, glucose 6-phosphate dehydrogenase(G6PDH), superoxide dismutase(SOD), catalase, and glutathione peroxidase(GPx) in the lung tissue of 4 groups of mice: the control grouts, group A(aminouiazole injected), group B(paraquat administered), group C(Paraquat and aminotriazole administered).
RESULTS
The mortality of mice administered with paraquat which were treated with aminotriazole was significantly increased compared with those of mice not treated with aminotriazole. Glutathione level in group B was decreased by 20%, a significant decrease compared with the control group. However, this level was not changed by the administration of aminotriazole(group C). The activity of G6PDH in all groups was not significantly changed compared with the control group. The activities of SOD, catalase, and glutathione peroxidase(GPx) in the lung tissue were significantly decreased by paraquat administration(group B); catalase showed the largest decrease. Catalase and GPX were significantly decreased by aminotriazole treatment in mice administered with paraquat but change in SOD activity was not significant.(group C).
CONCLUSION
Decrease in catalase activity by paraquat suggests that paraquat toxicity in the lungs is closely related to catalase activity. Paraquat toxicity in mice is enhanced by aminotriazole administration, and its result is related to the decrease of catalase activity rather than glutathione level in the lungs. Production of hydroxyl radicals, the most reactive oxygen metabolite, is accelerated due to increased hydrogen peroxide by catalase inhibition and the lung damage probably results from nonspecific tissue injury of hydroxyl radicals.

Keyword

Paraquat; Aminotriazole; Lung toxicity

MeSH Terms

Amitrole*
Animals
Catalase
Free Radicals
Glucose
Glutathione
Glutathione Peroxidase
Humans
Hydrogen Peroxide
Lung*
Mice*
Mortality
Multiple Organ Failure
Oxygen
Paraquat*
Pulmonary Fibrosis
Superoxides
Amitrole
Catalase
Free Radicals
Glucose
Glutathione
Glutathione Peroxidase
Hydrogen Peroxide
Oxygen
Paraquat
Superoxides
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr