Korean J Physiol Pharmacol.  2009 Apr;13(2):91-97. 10.4196/kjpp.2009.13.2.91.

Microarray Analysis of Differentially Expressed Genes in the Brains of Tubby Mice

Affiliations
  • 1Department of Pharmacology, Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea. ahnys@yuhs.ac

Abstract

The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdr1) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and micro-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.

Keyword

Tubby; Microarray; Gene expression; Cerebral cortex; Hypothalamus

MeSH Terms

Activins
Animals
Brain
Caspase 1
Central Nervous System
Cerebral Cortex
Gene Expression
GTP-Binding Proteins
Humans
Hypothalamus
Mice
Microarray Analysis
Negotiating
Obesity
p21-Activated Kinases
Phenotype
Receptor, Cholecystokinin B
Retinaldehyde
Transcription Factors
Activins
Caspase 1
GTP-Binding Proteins
Receptor, Cholecystokinin B
Retinaldehyde
Transcription Factors
p21-Activated Kinases

Figure

  • Fig. 1. Validation of array-based gene expression profiles in the cerebral cortex of tubby mice using real-time RT-PCR. mRNA levels of genes were determined using real-time RT-PCR. Expression profiles of up-regulated (A) and down-regulated genes (B) are presented as fold changes compared to the cerebral cortex of control mice. Expression levels of β-actin were used to normalize the values. ∗p<0.05 and ∗∗p<0.01.

  • Fig. 2. Validation of array-based gene expression profiles in the hypothalamus of tubby mice using real-time RT-PCR. mRNA levels of genes were determined using real-time RT-PCR. Hypothalamic Casp1 and Erdr1 expressions (A), the up-regulated genes in the cortex, and the expression profiles of other down-regulated genes in the hypothalamus (B) are represented as fold changes compared to the hypothalmus of control mice. Expression levels of β-actin were used to normalize the values. ∗p<0.05.


Reference

Abe S., Katagiri T., Saito-Hisaminato A., Usami S., Inoue Y., Tsunoda T., Nakamura Y. Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am J Hum Genet. 72:73–82. 2003.
Bode C., Wolfrum U. Caspase-3 inhibitor reduces apototic photoreceptor cell death during inherited retinal degeneration in tubby mice. Mol Vis. 9:144–150. 2003.
Boggon TJ., Shan WS., Santagata S., Myers SC., Shapiro L. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science. 286:2119–2125. 1999.
Article
Bokoch GM. Biology of the p21-activated kinases. Annu Rev Biochem. 72:743–781. 2003.
Article
Cau J., Hall A. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci. 118:2579–2587. 2005.
Article
Chandra R., Liddle RA. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes. 14:63–67. 2007.
Article
Clerc P., Coll Constans MG., Lulka H., Broussaud S., Guigne C., Leung-Theung-Long S., Perrin C., Knauf C., Carpene C., Penicaud L., Seva C., Burcelin R., Valet P., Fourmy D., Dufresne M. Involvement of cholecystokinin 2 receptor in food intake regulation: hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice. Endocrinology. 148:1039–1049. 2007.
Article
Coleman DL., Eicher EM. Fat (fat) and tubby (tub): two autosomal recessive mutations causing obesity syndromes in the mouse. J Hered. 81:424–427. 1990.
Article
Crawley JN., Corwin RL. Biological actions of cholecystokinin. Peptides. 15:731–755. 1994.
Article
Dormer P., Spitzer E., Moller W. EDR is a stress-related survival factor from stroma and other tissues acting on early haematopoietic progenitors (E-Mix). Cytokine. 27:47–57. 2004a.
Article
Dormer P., Spitzer E., Frankenberger M., Kremmer E. Erythroid differentiation regulator (EDR), a novel, highly conserved factor I. Induction of haemoglobin synthesis in erythroleukaemic cells. Cytokine. 26:231–242. 2004b.
Friedlander R. Role of caspase 1 in neurologic disease. Arch Neurol. 57:1273–1276. 2000.
Article
Gaudreau P., Quirion R., St-Pierre S., Pert CB. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin. Peptides. 4:755–762. 1983.
Article
Gillingwater TH., Wishart TM., Chen PE., Haley JE., Robertson K., MacDonald SH., Midleton S., Wawrowski K., Shipston MJ., Melmed S., Wyllie DJ., Skehel PA., Coleman MP., Ribchester RR. The neuroprotective WldS gene regulates expression of PTTG1 and erythroid differentiation regulator 1-like gene in mice and human cells. Hum Mol Genet. 15:625–635. 2006.
Article
Guan XM., Yu H., Van der Ploeg LH. Evidence of altered hypothalamic pro-opiomelanocortin/neuropeptide Y mRNA expression in tubby mice. Brain Res Mol Brain Res. 59:273–279. 1998.
Hill DR., Shaw TM., Woodruff GN. Species differences in the localization of ‘peripheral’ type cholecystokinin receptors in rodent brain. Neurosci Lett. 79:286–289. 1987a.
Article
Hill DR., Campbell NJ., Shaw TM., Woodruff GN. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci. 7:2967–2976. 1987b.
Article
Hing H., Xiao J., Harden N., Lim L., Zipursky SL. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell. 97:853–863. 1999.
Article
Ikeda A., Naggert JK., Nishina PM. Genetic modification of retinal degeneration in tubby mice. Exp Eye Res. 74:455–461. 2002.
Article
Ikeda S., He W., Ikeda A., Naggert JK., North MA., Nishina PM. Cell-specific expression of tubby gene family members (tub, Tulp1,2, and 3) in the retina. Invest Ophthalmol Vis Sci. 40:2706–2712. 1999.
Jacobs T., Causeret F., Nishimura YV., Terao M., Norman A., Hoshino M., Nikolic M. Localized activation of p21-activated kinase controls neuronal polarity and morphology. J Neurosci. 27:8604–8615. 2007.
Article
Katsanis N., Lupski JR., Beales PL. Exploring the molecular basis of Bardet-Biedl syndrome. Hum Mol Genet. 10:2293–2299. 2001.
Article
Kleyn PW., Fan W., Kovats SG., Lee JJ., Pulido JC., Wu Y., Berkemeier LR., Misumi DJ., Holmgren L., Charlat O., Woolf EA., Tayber O., Brody T., Shu P., Hawkins F., Kennedy B., Baldini L., Ebeling C., Alperin GD., Deeds J., Lakey ND., Culpepper J., Chen H., Glücksmann-Kuis MA., Carlson GA., Duyk GM., Moore KJ. Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell. 85:281–290. 1996.
Article
Koritschoner N., Alvarez-Dolado M., Kurz S., Heikenwälder M., Hacker C., Vogel F., Muñoz A., Zenke M. Thyroid hormone regulates the obesity gene tub. EMBO Rep. 2:499–504. 2001.
Kremer H., van Wijk E., Marker T., Wolfrum U., Roepman R. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 15 Spec No. 2:R262–270. 2006.
Article
Lee JH., Lee J., Seo GH., Kim CH., Ahn YS. Heparin inhibits NF-kappaB activation and increases cell death in cerebral endothelial cells after oxygen-glucose deprivation. J Mol Neurosci. 32:145–154. 2007.
Mackay IM., Arden KE., Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 30:1292–1305. 2002.
Article
Martinon F., Burns K., Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002.
Morency MA., Quirion R., Mishra RK. Distribution of cholecy-stokinin receptors in the bovine brain: a quantitative autoradiographic study. Neuroscience. 62:307–316. 1994.
Article
O'Shea E., Sanchez V., Orio L., Escobedo I., Green AR., Colado MI. 3,4-Methylenedioxymethamphetamine increases pro-interleukin-1beta production and caspase-1 protease activity in frontal cortex, but not in hypothalamus, of Dark Agouti rats: role of interleukin-1beta in neurotoxicity. Neuroscience. 135:1095–1105. 2005.
Ohlemiller KK., Hughes RM., Mosinger-Ogilvie J., Speck JD., Grosof DH., Silverman MS. Cochlear and retinal degeneration in the tubby mouse. Neuroreport. 6:845–849. 1995.
Article
Orio L., O'Shea E., Sanchez V., Pradillo JM., Escobedo I., Camarero J., Moro MA., Green AR., Colado MI. 3,4-Methylenedioxy-methamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion. J Neurochem. 89:1445–1453. 2004.
Oshima A., Suzuki S., Takumi Y., Hashizume K., Abe S., Usami S. CRYM mutations cause deafness through thyroid hormone binding properties in the fibrocytes of the cochlea. J Med Genet. 43:e25. 2006.
Article
Perche O., Doly M., Ranchon-Cole I. Caspase-dependent apoptosis in light-induced retinal degeneration. Invest Ophthalmol Vis Sci. 48:2753–2759. 2007.
Article
Roberts MR., Srinivas M., Forrest D., Morreale de Escobar G., Reh TA. Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc Natl Acad Sci U S A. 103:6218–6223. 2006.
Article
Santagata S., Boggon TJ., Baird CL., Gomez CA., Zhao J., Shan WS., Myszka DG., Shapiro L. G-protein signaling through tubby proteins. Science. 292:2041–2050. 2001.
Article
Schurmann A., Mooney AF., Sanders LC., Sells MA., Wang HG., Reed JC., Bokoch GM. p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol. 20:453–461. 2000.
Article
Schwartz MW., Porte D Jr. Diabetes, obesity, and the brain. Science. 307:375–379. 2005.
Article
Segovia L., Horwitz J., Gasser R., Wistow G. Two roles for mu-crystallin: a lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas. Mol Vis. 3:9. 1997.
Sells MA., Knaus UG., Bagrodia S., Ambrose DM., Bokoch GM., Chernoff J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol. 7:202–210. 1997.
Article
Stubdal H., Lynch CA., Moriarty A., Fang Q., Chickering T., Deeds JD., Fairchild-Huntress V., Charlat O., Dunmore JH., Kleyn P., Huszar D., Kapeller R. Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation. Mol Cell Biol. 20:878–882. 2000.
Suzuki S., Mori J., Hashizume K. Mu-crystallin, a NADPH-dependent T(3)-binding protein in cytosol. Trends Endocrinol Metab. 18:286–289. 2007.
Suzuki S., Mori J., Kobayashi M., Inagaki T., Inaba H., Komatsu A., Yamashita K., Takeda T., Miyamoto T., Ichikawa K., Hashizume K. Cell-specific expression of NADPH-dependent cytosolic 3,5,3'-triiodo-L-thyronine-binding protein (p38CTBP). Eur J Endocrinol. 148:259–268. 2003.
Article
Tang Y., Zhou H., Chen A., Pittman RN., Field J. The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem. 275:9106–9109. 2000.
Article
Umeda S., Suzuki MT., Okamoto H., Ono F., Mizota A., Terao K., Yoshikawa Y., Tanaka Y., Iwata T. Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J. 19:1683–1685. 2005.
Wang Y., Barbacioru C., Hyland F., Xiao W., Hunkapiller KL., Blake J., Chan F., Gonzalez C., Zhang L., Samaha RR. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics. 7:59. 2006.
Article
Wong ML., Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 39:75–85. 2005.
Article
Zapala MA., Hovatta I., Ellison JA., Wodicka L., Del Rio JA., Tennant R., Tynan W., Broide RS., Helton R., Stoveken BS., Winrow C., Lockhart DJ., Reilly JF., Young WG., Bloom FE., Barlow C. Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci U S A. 102:10357–10362. 2005.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr