J Korean Assoc Oral Maxillofac Surg.  2013 Apr;39(2):43-54. 10.5125/jkaoms.2013.39.2.43.

Antimicrobial surfaces for craniofacial implants: state of the art

Affiliations
  • 1Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA. anson.ong@utsa.edu

Abstract

In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.

Keyword

Dental implants; Osseointegration; Antimicrobial agents; Surface-coated materials; Bone regeneration

MeSH Terms

Anti-Infective Agents
Biocompatible Materials
Bone Regeneration
Bone Substitutes
Coated Materials, Biocompatible
Dental Implants
Durapatite
Esthetics
Osseointegration
Polymers
Tissue Engineering
Titanium
Anti-Infective Agents
Biocompatible Materials
Bone Substitutes
Coated Materials, Biocompatible
Dental Implants
Durapatite
Polymers
Titanium

Reference

1. Abu-Serriah MM, McGowan DA, Moos KF, Bagg J. Extra-oral endosseous craniofacial implants: current status and future developments. Int J Oral Maxillofac Surg. 2003; 32:452–458. PMID: 14759101.
Article
2. Bencharit S. Challenges and prospective applications of extra-oral implants for maxilloracial rehabilitation. Anaplastology. 2012; 1:e103.
3. Wan DC, Nacamuli RP, Longaker MT. Craniofacial bone tissue engineering. Dent Clin North Am. 2006; 50:175–190. PMID: 16530056.
Article
4. Dumas JE, BrownBaer PB, Prieto EM, Guda T, Hale RG, Wenke JC, et al. Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects. Biomed Mater. 2012; 7:024112. PMID: 22456057.
Article
5. Kretlow JD. Biomaterial-based strategies for craniofacial tissue engineering [PhD thesis]. 2010. Houston: Department of Bioengineering, Rice University;p. 416.
6. Pagni G, Kaigler D, Rasperini G, Avila-Ortiz G, Bartel R, Giannobile WV. Bone repair cells for craniofacial regeneration. Adv Drug Deliv Rev. 2012; 64:1310–1319. PMID: 22433781.
Article
7. Kim J, McBride S, Fulmer M, Harten R, Garza Z, Dean DD, et al. Fiber-reinforced calcium phosphate cement formulations for cranioplasty applications: a 52-week duration preclinical rabbit calvaria study. J Biomed Mater Res B Appl Biomater. 2012; 100:1170–1178. PMID: 22114067.
Article
8. Thimmappa B, Girod SC. Principles of implant-based reconstruction and rehabilitation of craniofacial defects. Craniomaxillofac Trauma Reconstr. 2010; 3:33–40. PMID: 22110816.
9. Wolfaardt JF, Wilkes GH, Parel SM, Tjellström A. Craniofacial osseointegration: the Canadian experience. Int J Oral Maxillofac Implants. 1993; 8:197–204. PMID: 8359877.
10. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater. 2009; 21:3368–3393. PMID: 19750143.
Article
11. Stanford CM. Surface modifications of dental implants. Aust Dent J. 2008; 53(Suppl 1):S26–S33. PMID: 18498581.
Article
12. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003; 67:932–949. PMID: 12959168.
Article
13. Kuzyk PR, Schemitsch EH. The basic science of peri-implant bone healing. Indian J Orthop. 2011; 45:108–115. PMID: 21430864.
Article
14. Wang W, Ouyang Y, Poh CK. Orthopaedic implant technology: biomaterials from past to future. Ann Acad Med Singapore. 2011; 40:237–244. PMID: 21678015.
15. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci. 2009; 54:397–425.
16. Black J, Hastings GW. Handbook of biomaterial properties. London, New York: Chapman & Hall;1998.
17. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008; 4:535–543. PMID: 18226985.
Article
18. Norowski PA Jr, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater. 2009; 88:530–543. PMID: 18698626.
Article
19. Shirtliff M, Leid JG. The role of biofilms in device-related infections. Springer series on biofilms, 3. Berlin: Springer;2009.
20. Piattelli A, Cosci F, Scarano A, Trisi P. Localized chronic suppurative bone infection as a sequel of peri-implantitis in a hydroxyapatite-coated dental implant. Biomaterials. 1995; 16:917–920. PMID: 8562780.
Article
21. Götz F. Staphylococcus and biofilms. Mol Microbiol. 2002; 43:1367–1378. PMID: 11952892.
Article
22. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011; 2:445–459. PMID: 21921685.
23. Richter WS, Ivancevic V, Meller J, Lang O, Le Guludec D, Szilvazi I, et al. 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging. 2011; 38:899–910. PMID: 21321791.
Article
24. Yaszemski MJ, Trantolo DJ, Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL. Biomaterials in Orthopedics. New York: Marcel Dekker;2004.
25. Ramaswamy Y, Wu C, Zreiqat H. Orthopedic coating materials: considerations and applications. Expert Rev Med Devices. 2009; 6:423–430. PMID: 19572797.
Article
26. Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and Pitfalls. Materials. 2012; 5:1528–1545.
Article
27. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater. 2009; 88:579–596. PMID: 18973274.
Article
28. Jackson MJ, Ahmed W. Surface engineered surgical tools and medical devices. New York: Springer;2007.
29. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004; 83:529–533. PMID: 15218041.
Article
30. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol. 2007; 78:2171–2184. PMID: 17970685.
Article
31. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res. 2007; 18:481–488. PMID: 17484737.
32. Sul YT, Johansson CB, Röser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials. 2002; 23:1809–1817. PMID: 11950051.
Article
33. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont. 2006; 19:319–328. PMID: 16900812.
34. Al-Nawas B, Groetz KA, Goetz H, Duschner H, Wagner W. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res. 2008; 19:1–8. PMID: 17944964.
Article
35. Sul YT, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005; 26:6720–6730. PMID: 15975649.
Article
36. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res. 2002; 13:252–259. PMID: 12010155.
Article
37. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials. 2005; 26:327–337. PMID: 15262475.
Article
38. de Groot K, Klein COAT, Wolke JGC, de Blieck-Hogervorst JMA. Plasma-sprayed coating of calcium phosphate. In : Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics, Vol. II: Calcium phosphate and Hydroxyapatite Ceramics. Boca Raton: CRC Press;1990. p. 133–142.
39. Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials. 2004; 25:4601–4606. PMID: 15120505.
Article
40. Lemons J. Biomaterials for dental implants. In : Misch CE, editor. Contemporary implant dentistry. St. Louis: Mosby;1999.
41. Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent. 1998; 7:315–322. PMID: 10196808.
Article
42. Kay JF. Calcium phosphate coatings for dental implants. Current status and future potential. Dent Clin North Am. 1992; 36:1–18. PMID: 1310648.
43. Lacefield WR. Hydroxyapatite coatings. Ann N Y Acad Sci. 1988; 523:72–80. PMID: 3382133.
Article
44. Goené RJ, Testori T, Trisi P. Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. Int J Periodontics Restorative Dent. 2007; 27:211–219. PMID: 17694944.
45. Berglundh T, Abrahamsson I, Albouy JP, Lindhe J. Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res. 2007; 18:147–152. PMID: 17269959.
Article
46. Monjo M, Petzold C, Ramis JM, Lyngstadaas SP, Ellingsen JE. In vitro osteogenic properties of two dental implant surfaces. Int J Biomater. 2012; 2012:181024. PMID: 23118752.
Article
47. Abrahamsson I, Albouy JP, Berglundh T. Healing at fluoride-modified implants placed in wide marginal defects: an experimental study in dogs. Clin Oral Implants Res. 2008; 19:153–159. PMID: 18039334.
Article
48. Goodrich JT, Sandler AL, Tepper O. A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst. 2012; 28:1577–1588. PMID: 22872276.
Article
49. Cho YR, Gosain AK. Biomaterials in craniofacial reconstruction. Clin Plast Surg. 2004; 31:377–385. PMID: 15219744.
Article
50. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater. 2009; 21:3368–3393. PMID: 19750143.
Article
51. BioMet. TiMesh®, Titanized polymers. 2013. cited 2013 Feb 26. Available from: http://www.biomet.com/biologics/timesh.cfm.
52. Schug-Pass C, Tamme C, Tannapfel A, Köckerling F. A lightweight polypropylene mesh (TiMesh) for laparoscopic intraperitoneal repair of abdominal wall hernias: comparison of biocompatibility with the DualMesh in an experimental study using the porcine model. Surg Endosc. 2006; 20:402–409. PMID: 16432656.
53. Hollinsky C, Sandberg S, Koch T, Seidler S. Biomechanical properties of lightweight versus heavyweight meshes for laparo-scopic inguinal hernia repair and their impact on recurrence rates. Surg Endosc. 2008; 22:2679–2685. PMID: 18443869.
Article
54. Ge X, Leng Y, Bao C, Xu SL, Wang R, Ren F. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A. 2010; 95:588–599. PMID: 20725973.
Article
55. Polypid. Stretching the limits of effective long term drug delivery. 2013. cited 2013 Feb 28. Available from: http://www.polypid.com/.
56. Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, et al. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials. 1995; 16:855–860. PMID: 8527601.
Article
57. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials. 2007; 28:909–915. PMID: 17095086.
Article
58. Crawford K, Berrey BH, Pierce WA, Welch RD. In vitro strength comparison of hydroxyapatite cement and polymethylmethacrylate in subchondral defects in caprine femora. J Orthop Res. 1998; 16:715–719. PMID: 9877396.
Article
59. Dickson KF, Friedman J, Buchholz JG, Flandry FD. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma. 2002; 53:1103–1108. PMID: 12478035.
Article
60. Belkoff SM, Mathis JM, Jasper LE, Deramond H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine (Phila Pa 1976). 2001; 26:1542–1546. PMID: 11462083.
Article
61. Stryker. BoneSource: Ostoconductive HA bone paste. 2004. cited 2013 Mar 1. Available from: http://www.stryker.com/en-us/GSDAMRetirement/index.htmstellent/groups/public/documents/web_prod/023526.pdf.
62. Spies CK, Schnürer S, Gotterbarm T, Breusch SJ. Efficacy of Bone Source™ and Cementek™ in comparison with Endobon™ in critical size metaphyseal defects, using a minipig model. J Appl Biomater Biomech. 2010; 8:175–185. PMID: 21337309.
63. DePuy Synthes. Norian SRS. 2012. cited 2013 Mar 1. Available from: http://www.synthes.com/sites/intl/Products/Biomaterials/Trauma/Pages/Norian_SRS.aspx.
64. DePuy Synthes. Norian SRS. Distal radius-impacted intra-articular fracture. 2007. cited 2013 Mar 1. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.883.pdf.
65. DePuy Synthes. Norian SRS. Cystic lesion (pelvis) - curettage of a cystic lesion. 2006. cited 2013 Mar 1. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.886.pdf.
66. DePuy Synthes. Norian SRS. Calcaneus. 2006. cited 2013 Mar 1. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.886.pdf.
67. BioMet Microfixation. Biomet Microfixation Mimix® and Mimix® QS Bone Replacement Systems. 2012. cited 2013 Mar 4. Available from: http://www.lorenzsurgical.com/product.php?item=24&cat=9;%20http://www.lorenzsurgical.com/downloads/LOR-7013-MimixBro%20(m)-FINAL.pdf.
68. Zimmer. Palacos® Bone Cements. 2013. cited 2013 Mar 4. Available from: http://www.zimmer.com/en-US/hcp/surgical/product/palacos-bone-cements.jspx.
69. NovaBone. NovaBone: bioactive synthetic bone graft. 2009. cited 2013 Mar 4. Available from: http://www.novabone.com/NB/novabone_works.html.
70. Verné E, Ferraris M, Jana C, Paracchini L. Bioverit® I base glass/Ti particulate biocomposite: "in situ" vacuum plasma spray deposition. J Eur Ceram Soc. 2000; 20:473–479.
Article
71. Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg. 2010; 63:1615–1623. PMID: 19577527.
Article
72. Stryker. Medpor®. 2013. cited 2013 Mar 4. Available from: http://www.stryker.com/en-us/products/Craniomaxillofacial/MEDPOR/index.htm.
73. OsteoSymbionics™. CLEARSHIELD™ Craniofacial Implant. 2011. cited 2013 Mar 4. Available from: http://www.osteosymbionics.com/implants/.
74. BioMet Microfixation. LactoSorb® SE: The leader in resorbable technology. 2013. cited 2013 Mar 4. Available from: http://www.lorenzsurgical.com/product.php?item=17.
75. BonAlive Biomaterials Ltd. BonAlive®. 2012. cited 2013 Mar 4. Available from: http://www.bonalive.com/.
76. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004; 25:4135–4148. PMID: 15046904.
Article
77. Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed Engl. 2008; 47:8831–8834. PMID: 18846530.
Article
78. Al-Deyab SS, El-Newehy MH, Nirmala R, Abdel-Megeed A, Kim HY. Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J Chem Eng. 2013; 30:422–428.
Article
79. Bílek F, Sulovská K, Lehocký M, Sáha P, Humpolíček P, Mozetič M, et al. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: graft type effect on antibacterial properties. Colloids Surf B Biointerfaces. 2013; 102:842–848. PMID: 23104040.
Article
80. Zhao C, Li X, Li L, Cheng G, Gong X, Zheng J. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir. 2013; 29:1517–1524. PMID: 23317290.
Article
81. Liu Y, Kim HI. Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym. 2012; 89:111–116.
Article
82. Tsai MT, Chang YY, Huang HL, Hsu JT, Chen YC, Wu AY. Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants. Thin Solid Films. 2013; 528:143–150.
Article
83. Ketonis C, Parvizi J, Jones LC. Evolving strategies to prevent implant-associated infections. J Am Acad Orthop Surg. 2012; 20:478–480. PMID: 22751167.
Article
84. Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, et al. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater. 2013; 9:5088–5099. PMID: 23059413.
Article
85. Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010; 89:657–665. PMID: 20448246.
Article
86. Li L, Finnegan MB, Özkan S, Kim Y, Lillehoj PB, Ho CM, et al. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol. 2010; 25:384–390. PMID: 21040512.
Article
87. Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices. 2009; 6:553–567. PMID: 19751126.
Article
88. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF. Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir. 2006; 22:9820–9823. PMID: 17106967.
Article
89. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008; 130:202–215. PMID: 18687500.
Article
90. Langer R. Polymer-controlled drug delivery systems. Acc Chem Res. 1993; 26:537–542.
Article
91. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology. 2011; 22:135101. PMID: 21343644.
92. White RJ. An historical overview of the use of silver in wound management. Br J Community Nurs. 2001; 6(Silver Suppl 1):3–8.
Article
93. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009; 27:76–83. PMID: 18854209.
94. Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005; 21:9651–9659. PMID: 16207049.
Article
95. Nair LS, Laurencin CT. Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol. 2007; 3:301–316.
Article
96. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006; 110:16248–16253. PMID: 16913750.
97. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16:2346–2353. PMID: 20818017.
Article
98. Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010; 44:8337–8342. PMID: 20932003.
Article
99. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010; 85:1115–1122. PMID: 19669753.
Article
100. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007; 73:1712–1720. PMID: 17261510.
101. de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012; 32:867–879. PMID: 22696476.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr