1. Missiaen L, Robberecht W, van der Bosch L, Callewaert G, Parys JB, Wuytack F, et al. Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium. 2000. 28:1–21.
2. Berridge MJ. Inositol trisphosphate and calcium signaling. Nature. 1993. 361:315–325.
Article
3. Lee HC, Munshi C, Graeff R. Structures and activities of cyclic ADP-ribose, NAADP and their metabolic enzymes. Mol Cell Biochem. 1999. 193:89–98.
Article
4. Petersen OH, Cancela JM. New Ca2+-releasing messengers: are they important in the nervous system? Trends Neurosci. 1999. 22:488–495.
5. Clementi E, Meldolesi J. Pharmacological and functional properties of voltage-independent Ca
2+ channels. Cell Calcium. 1996. 19:269–279.
Article
6. Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986. 7:1–12.
Article
7. Putney JW Jr. Capacitative Calcium Entry. 1997. Austin, TX: Landes Biomedical Publishing;210.
8. Putney JW Jr, Bird GS. The signal for capacitative calcium entry. Cell. 1993. 75:199–201.
Article
9. Tsien RW, Tsien RY. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990. 6:715–760.
Article
10. Parekh AB, Penner R. Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci U S A. 1995. 92:7907–7911.
Article
11. Lin WW, Chuang DM. Endothelin- and ATP-induced inhibition of adenylyl cyclase activity in C6 glioma cells: role of Gi and calcium. Mol Pharmacol. 1993. 44:158–165.
12. Tsunoda Y, Stuenkel EL, Williams JA. Characterization of sustained [Ca2+]i increase in pancreatic acinar cells and its relation to amylase secretion. Am J Physiol. 1990. 259:G792–G801.
13. Mertz LM, Horn VJ, Baum BJ, Ambudkar IS. Calcium entry in rat parotid acini: activation by carbachol and aluminum fluoride. Am J Physiol. 1990. 258:C654–C661.
Article
14. Zeng W, Lee MG, Yan M, Diaz J, Benjamin I, Marino CR, et al. Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Am J Physiol. 1997. 273:C442–C455.
Article
15. Xu X, Diaz J, Zhao H, Muallem S. Characterization, localization and axial distribution of Ca
2+ signalling receptors in the rat submandibular salivary gland ducts. J Physiol. 1996. 491:647–662.
Article
16. Hong JH, Lee SI, Kim KE, Yong TS, Seo JT, Sohn MH, et al. German cockroach extract activates protease- activated receptor 2 in human airway epithelial cells. J Allergy Clin Immunol. 2004. 113:315–319.
Article
17. Shin DM, Dehoff M, Luo X, Kang SH, Tu J, Nayak SK, et al. Homer 2 tunes G protein-coupled receptors stimulus intensity by regulating RGS proteins and PLCbeta GAP activities. J Cell Biol. 2003. 162:293–303.
Article
18. Segawa A, Sahara N, Suzuki K, Yamashina S. Acinar structure and membrane regionalization as a prerequisite for exocrine secretion in the rat submandibular gland. J Cell Sci. 1985. 78:67–85.
Article
19. Yamamoto-Hino M, Miyawaki A, Segawa A, Adachi E, Yamashina S, Fujimoto T, et al. Apical vesicles bearing inositol 1,4,5-trisphosphate receptors in the Ca
2+ initiation site of ductal epithelium of submandibular gland. J Cell Biol. 1998. 141:135–142.
Article
20. Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, et al. Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci U S A. 2000. 97:13126–13131.
Article
21. Toescu EC, Lawrie AM, Petersen OH, Gallacher DV. Spatial and temporal distribution of agonist-evoked cytoplasmic Ca
2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J. 1992. 11:1623–1629.
Article
22. Nathanson MH, Padfield PJ, O'Sullivan AJ, Burgstahler DV, Jamieson JD. Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J Biol Chem. 1992. 267:18118–18121.
23. Kasai H, Li YX, Miyashita Y. Subcellular distribution of Ca
2+ release channels underlying Ca
2+ waves and oscillations in exocrine pancreas. Cell. 1993. 74:669–677.
Article
24. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al. STIM1, an essential and conserved component of store-operated Ca
2+ channel function. J Cell Biol. 2005. 169:435–445.
Article
25. Feske S, Gwack YS, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006. 441:179–185.
Article