Ann Lab Med.  2018 Nov;38(6):555-562. 10.3343/alm.2018.38.6.555.

Detection of mcr-1 Plasmids in Enterobacteriaceae Isolates From Human Specimens: Comparison With Those in Escherichia coli Isolates From Livestock in Korea

Affiliations
  • 1Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea. kscpjsh@yuhs.ac
  • 2Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
  • 3National Institute of Health, Centers for Disease Control and Prevention, Cheongju, Korea.

Abstract

BACKGROUND
The emerging mobile colistin resistance gene, mcr-1, is an ongoing worldwide concern and an evaluation of clinical isolates harboring this gene is required in Korea. We investigated mcr-1-possessing Enterobacteriaceae among Enterobacteriaceae strains isolated in Korea, and compared the genetic details of the plasmids with those in Escherichia coli isolates from livestock.
METHODS
Among 9,396 Enterobacteriaceae clinical isolates collected between 2010 and 2015, 1,347 (14.3%) strains were resistant to colistin and those were screened for mcr-1 by PCR. Colistin minimum inhibitory concentrations (MICs) were determined by microdilution, and conjugal transfer of the mcr-1-harboring plasmids was assessed by direct mating. Whole genomes of three mcr-1-positive Enterobacteriaceae clinical isolates and 11 livestock-origin mcr-1-positive E. coli isolates were sequenced.
RESULTS
Two E. coli and one Enterobacter aerogenes clinical isolates carried carried IncI2 plasmids harboring mcr-1, which conferred colistin resistance (E. coli MIC, 4 mg/L; E. aerogenes MIC, 32 mg/L). The strains possessed the complete conjugal machinery except for E. aerogenes harboring a truncated prepilin peptidase. The E. coli plasmid transferred more efficiently to E. coli than to Klebsiella pneumoniae or Enterobacter cloacae recipients. Among the three bacterial hosts, the colistin MIC was the highest for E. coli owing to the higher mcr-1-plasmid copy number and mcr-1 expression levels. Ten mcr-1-positive chicken-origin E. coli strains also possessed mcr-1-harboring IncI2 plasmids closely related to that in the clinical E. aerogenes isolate, and the remaining one porcine-origin E. coli possessed an mcr-1-harboring IncX4 plasmid.
CONCLUSIONS
mcr-1-harboring IncI2 plasmids were identified in clinical Enterobacteriaceae isolates. These plasmids were closely associated with those in chicken-origin E. coli strains in Korea, supporting the concept of mcr-1 dissemination between humans and livestock.

Keyword

mcr-1; Colistin resistance; Enterobacteriaceae; IncI2 plasmid

MeSH Terms

Colistin
Enterobacter aerogenes
Enterobacter cloacae
Enterobacteriaceae*
Escherichia coli*
Escherichia*
Genome
Humans*
Klebsiella pneumoniae
Korea*
Livestock*
Microbial Sensitivity Tests
Plasmids*
Polymerase Chain Reaction
Colistin

Figure

  • Fig. 1 Comparative analyses of the mcr-1-plasmids from clinical Enterobacteriaceae strains and livestock-origin Escherichia coli strains. (A) Left, molecular phylogeny was conducted by neighbor joining analysis of nucleotide sequences (324 bp) of the replication origin of the mcr-1-plasmids. Multiple sequence alignments were performed with MUSCLE v3.8, and the phylogenetic tree was reconstructed using the distance method implemented in the BioNJ program [34]. Plasmid names are indicated in each taxon along with the size in brackets. Strain name and GenBank accession number are indicated below the plasmid name, if available. Color codes: Black, clinical Enterobacteriaceae strains; blue, E. coli from healthy chickens; red, E. coli from chicken carcasses; and green, E. coli from diseased pig. Right, schematic representation of plasmid structures. The sequence of each plasmid was aligned using BlastN and compared using the Artemis Comparison Tool. Highly-conserved regions (>96% nucleic acid identity) are indicated in red, and moderately conserved regions (>92% nucleic acid identity) are indicated in blue. Open arrows, open reading frames; blue, the replication origin; red, antimicrobial resistance; yellow, plasmid backbone; orange, transposases; and green, plasmid transfer. (B) The yellow arrow indicates the site-specific recombinase rci gene, and the green arrow indicates the pilUs assembly pilV gene. Black arrowheads represent the six 19-bp repeats. Open reading frames in the direction of translation are indicated by arrows.


Cited by  1 articles

MCR1 and KPC2 Co-producing Klebsiella pneumoniae Bacteremia: First Case in Korea
Ji Young Park, Sang Taek Heo, Ki Tae Kwon, Do Young Song, Kwang Jun Lee, Ji Ae Choi
Infect Chemother. 2019;51(4):399-404.    doi: 10.3947/ic.2019.51.4.399.


Reference

1. Giamarellou H, Poulakou G. Multidrug-resistant gram-negative infections: what are the treatment options? Drugs. 2009; 69:1879–1901. PMID: 19747006.
2. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016; 16:161–168. PMID: 26603172.
3. Skov RL, Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill. 2016; 21:30155. PMID: 26967914.
4. Di Pilato V, Arena F, Tascini C, Cannatelli A, Henrici De Angelis L, Fortunato S, et al. mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother. 2016; 60:5612–5615. PMID: 27401575.
5. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016; 21:30280.
6. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017; 8:e00543-17. PMID: 28655818.
7. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017; 22:30589. PMID: 28797329.
8. Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis. 2016; 16:293. PMID: 26973308.
9. von Wintersdorff CJ, Wolffs PF, van Niekerk JM, Beuken E, van Alphen LB, Stobberingh EE, et al. Detection of the plasmid-mediated colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers. J Antimicrob Chemother. 2016; 71:3416–3419. PMID: 27559117.
10. Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg. 2016; 110:377–380. PMID: 27475987.
11. Gao R, Hu Y, Li Z, Sun J, Wang Q, Lin J, et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog. 2016; 12:e1005957. PMID: 27893854.
12. Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Kasbohrer A, Roesler U, et al. Colistin resistance gene mcr-1 in extended-spectrum beta-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany. Lancet Infect Dis. 2016; 16:282–283. PMID: 26774242.
13. Snesrud E, Ong AC, Corey B, Kwak YI, Clifford R, Gleeson T, et al. Analysis of Serial Isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon. Antimicrob Agents Chemother. 2017; 61:e00056-17. PMID: 28223389.
14. Du H, Chen L, Tang YW, Kreiswirth BN. Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect Dis. 2016; 16:287–288. PMID: 26842776.
15. Zhang XF, Doi Y, Huang X, Li HY, Zhong LL, Zeng KJ, et al. Possible transmission of mcr-1-harboring Escherichia coli between companion animals and human. Emerg Infect Dis. 2016; 22:1679–1681. PMID: 27191649.
16. Yang RS, Feng Y, Lv XY, Duan JH, Chen J, Fang LX, et al. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a single muscovy duck (Cairina moschata). Antimicrob Agents Chemother. 2016; 60:6899–6902. PMID: 27550364.
17. Teo JQ, Ong RT, Xia E, Koh TH, Khor CC, Lee SJ, et al. mcr-1 in multidrug-resistant blaKPC-2-producing clinical Enterobacteriaceae isolates in Singapore. Antimicrob Agents Chemother. 2016; 60:6435–6437. PMID: 27503652.
18. Sun J, Li XP, Yang RS, Fang LX, Huo W, Li SM, et al. Complete nucleotide sequence of an IncI2 plasmid coharboring blaCTX-M-55 and mcr-1. Antimicrob Agents Chemother. 2016; 60:5014–5017. PMID: 27216063.
19. Quan J, Li X, Chen Y, Jiang Y, Zhou Z, Zhang H, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect Dis. 2017; 17:400–410. PMID: 28139430.
20. Moellering RC Jr. NDM-1—a cause for worldwide concern. N Engl J Med. 2010; 363:2377–2379. PMID: 21158655.
21. Lim SK, Kang HY, Lee K, Moon DC, Lee HS, Jung SC. First detection of the mcr-1 gene in Escherichia coli isolated from livestock between 2013 and 2015 in South Korea. Antimicrob Agents Chemother. 2016; 60:6991–6993. PMID: 27572390.
22. The Joint CLSI-European Committee on Antimicrobial Susceptibility Testing (EUCAST) Polymyxin Breakpoints Working Group. Recommendations for MIC determination of colistin (polymyxin E). Wayne, PA: Clinical and Laboratory Standards Institute;2016. Updated on Mar 2016. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf.
23. Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal Dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. 2016; 60:7216–7223. PMID: 27671068.
24. Poirel L, Kieffer N, Brink A, Coetze J, Jayol A, Nordmann P. Genetic features of MCR-1-producing colistin-resistant Escherichia coli isolates in South Africa. Antimicrob Agents Chemother. 2016; 60:4394–4397. PMID: 27161623.
25. Kim ES, Chong YP, Park SJ, Kim MN, Kim SH, Lee SO, et al. Detection and genetic features of MCR-1-producing plasmid in human Escherichia coli infection in South Korea. Diagn Microbiol Infect Dis. 2017; 89:158–160. PMID: 28780246.
26. Fernandes MR, McCulloch JA, Vianello MA, Moura Q, Pérez-Chaparro PJ, Esposito F, et al. First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli Sequence Type 101 isolate from a human infection in Brazil. Antimicrob Agents Chemother. 2016; 60:6415–6417. PMID: 27503650.
27. Elnahriry SS, Khalifa HO, Soliman AM, Ahmed AM, Hussein AM, Shimamoto T, et al. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrob Agents Chemother. 2016; 60:3249–3250. PMID: 26953204.
28. Bradley DE, Coetzee JN. The determination of two morphologically distinct types of pilus by plasmids of incompatibility group I2. J Gen Microbiol. 1982; 128:1923–1926. PMID: 6128374.
29. Yoshida T, Kim SR, Komano T. Twelve pil genes are required for biogenesis of the R64 thin pilus. J Bacteriol. 1999; 181:2038–2043. PMID: 10094679.
30. Akahane K, Sakai D, Furuya N, Komano T. Analysis of the pilU gene for the prepilin peptidase involved in the biogenesis of type IV pili encoded by plasmid R64. Mol Genet Genomics. 2005; 273:350–359. PMID: 15838638.
31. Komano T, Kim SR, Yoshida T, Nisioka T. DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64. J Mol Biol. 1994; 243:6–9. PMID: 7932741.
32. Sun J, Fang LX, Wu Z, Deng H, Yang RS, Li XP, et al. Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci Rep. 2017; 7:424. PMID: 28336940.
33. Yoon EJ, Yang JW, Kim JO, Lee H, Lee KJ, Jeong SH. Carbapenemase-producing Enterobacteriaceae in South Korea: a report from the National Laboratory Surveillance System. Future Microbiol. 2018; 13:771–783. PMID: 29478336.
34. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792–1797. PMID: 15034147.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr