1). Hammerum AM, Heuer OE. Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis. 2009; 48:916–21.
2). Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006; 9:466–75.
3). Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011; 66:1–14.
4). Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Mine Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother. 1998; 32:1243–6.
5). Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, et al. Emergence of human pandemic O25: H4-ST131 CTX-M-15 extended-spectrum-β-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother. 2010; 65:651–60.
6). Baraniak A, Fiett J, Sulikowska A, Hryniewicz W, Gniadkowski M. Countrywide spread of CTX-M-3 extended-spectrum β-lactamase-producing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother. 2002; 46:151–9.
7). Ho PL, Lo WU, Yeung MK, Li Z, Chan J, Chow KH, et al. Dissemination of pHK01-like incompatibility group IncFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet Microbiol. 2012; 158:172–9.
8). Guenther S, Ewers C, Wieler LH. Extended-spectrum beta-lactamases producing
E. coli in wildlife, yet another form of environmental pollution? Front Microbiol. 2011; 2:246.
Article
9). Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, et al. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother. 2012; 56:2705–12.
10). Shin JY, Kim DH, Ko KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011; 63:39–47.
11). Kim J, Lim YM, Jeong YS, Seol SY. Occurrence of CTX-M-3, CTX-M-15, CTXM-14, and CTX-M-9 extended-spectrum-β-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother. 2005; 49:1572–5.
12). Ruppé E, Hem S, Lath S, Gautier V, Ariey F, Sarthou JL, et al. CTX-M β-lactamases in Escherichia coli from community-acquired urinary tract infections, Cambodia. Emerg Infect Dis. 2009; 15:741–8.
13). Kim JM, Lim YM. Prevalence of CTX-M extended-spectrum beta-lactamases in clinical isolates of Enterobacteriaceae in Korea. J Bacteriol Virol. 2004; 34:303–10.
14). Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; approved guideline. CLSI Document M100-S21. Clinical and Laboratory Standards Institute;Wayne, PA: 2011.
15). Choi MJ, Ko KS. Persister cells: Survival strategies under antimicrobiotic stress. J Bacteriol Virol. 2013; 43:73–6.
Article
16). Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005; 43:4178–82.
17). Walk ST, Alm EW, Gordon DM, Ram JL, Toranzos GA, Tiedje JM, et al. Cryptic lineages of the Genus Escherichia. Appl Environ Microbial. 2009; 75:6534–44.
18). Ko KS, Lee JY, Baek JY, Suh JY, Lee MY, Choi JY, et al. Predominance of an ST11 extended-spectrum β-lactamase-producing Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J Med Microbiol. 2010; 59:822–8.
19). Dhanji H, Patel R, Wall R, Doumith M, Patel B, Hope R, et al. Variation in the genetic environments of bla(CTX-M-15) in Escherichia coli from the faeces of travellers returning to the United Kingdom. J Antimicrob Chemother. 2011; 66:1005–12.
20). Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother. 2006; 57:14–23.
21). Shakil S, Khan AU. Interaction of CTX-M-15 enzyme with cefotaxime: a molecular modeling and docking study. Bioinformation. 2010; 4:468–72.
22). Xiong ZZ, Zhu DM, Wang F, Zhang YY. CTX-M-14, CTX-M-24 and resistance in Escherichia coli and Klebsiella pneumoniae clinical isolates. Chin Med J. 2006; 119:160–4.
23). Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernandez J, Granholm S, Kayser Y, et al. Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the South of France. PloS One. 2009; 4:e5958.
24). Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis. 2011; 17:1216–22.
25). Stokes MO, Cottell JL, Piddock LJ, Wu G, Wootton M, Mevius DJ, et al. Detection and characterization of pCT-like plasmid vectors for blaCTX-M-14 in Escherichia coli isolates from humans, turkeys and cattle in England and Wales. J Antimicrob Chemother. 2012; 67:1639–44.
26). So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim SK, et al. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn Microbiol Infect Dis. 2012; 73:195–9.
27). Shin J, Choi MJ, Ko KS. Replicon sequence typing of IncF plasmids and the genetic environments of blaCTX-M-15 indicate multiple acquisitions of blaCTX-M-15 in Escherichia coli and Klebsiella pneumoniae isolates from South Korea. J Antimicrob Chemother. 2012; 67:1853–7.