1). Rossolini GM, D’ Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect. 2008; 14:33–41.
Article
2). Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010; 13:558–64.
3). Pitout JD, Laupland KB. Extendedspectrum β- lactamase- producing Enterobacteriaceae: an emerging public- health concern. Lancet Infect Dis. 2008; 8:159–66.
4). Pottinger P, Reller LB, Ryan KJ. Enterobacteriaceae. Ryan KJ, Ray CG, editors. Sherris Medical Microbiology. 6th ed.New York: McGraw-Hill Education, Inc.;2014. p. 579–608.
5). Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011; 66:1–14.
6). Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist. 2011; 17:83–97.
7). Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48:1–12.
Article
8). Kang CI, Wi YM, Lee MY, Ko KS, Chung DR, Peck KR, et al. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J Clin Microbiol. 2012; 50:312–7.
9). El Salabi A, Walsh TR, Chouchani C. Extended spectrum betalactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gramnegative bacteria. Crit Rev Microbiol. 2013; 39:113–22.
10). Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev. 2011; 35:707–35.
Article
11). Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013; 303:298–304.
Article
12). Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014; 38:865–91.
Article
13). Hickman AB, Dyda F. Mechanisms of DNA transposition. Craig NL, editor. Mobile DNA III. 3rd ed.Washington, DC: ASM Press;2015. p. 531–53.
Article
14). Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M. Everyman's guide to bacterial insertion sequences. Craig NL, editor. Mobile DNA III. 3rd ed.Washington, DC: ASM Press;2015. p. 555–90.
Article
15). Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation on demand. Craig NL, editor. Mobile DNA III. 3rd ed.Washington, DC: ASM Press;2015. p. 139–61.
16). Lartigue MF, Poirel L, Nordmann P. Diversity of genetic environment of bla CTX- M genes. FEMS Microbiol Lett. 2004; 234:201–7.
17). Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various bla CTX- M genes. J Antimicrob Chemother. 2006; 57:14–23.
18). Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended- spectrum β- lactamases in Gram-negative bacteria. Crit Rev Microbiol. 2013; 39:79–101.
19). Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M, Takakura S, et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother. 2015; 70:1639–49.
20). Strockbine NA, Bopp CA, Fields PI, Kaper JB, Nataro JP. Escherichia, Shigella, and Salnomella. Jorgensen JH, Pfaller MA, editors. Manual of Clinical Microbiology. 11th ed.Washington, DC: ASM Press;2015. p. 685–713.
21). Jorgensen JH, Turnidge JD. Susceptibility test methods: Dilution and disk diffusion methods. Jorgensen JH, Pfaller MA, editors. Manual of Clinical Microbiology. 11th ed.Washington, DC: ASM Press;2015. p. 1253–73.
Article
22). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 24th ed.Wayne: CLSI Press;2014.
23). Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug- resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268–81.
24). Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981; 145:1365–73.
Article
25). Levy-Hara G, Amá bile-Cuevas CF, Gould I, Hutchinson J, Abbo L, Saxynger L, et al. “Ten commandments” for the appropriate use of antibiotics by the practicing physician in an outpatient setting. Front Microbiol. 2011; 2:230.
Article
26). Matsumura Y, Yamamoto M, Nagao M, Ito Y, Takakura S, Ichiyama S. Association of fluoroquinolone resistance, virulence genes, and IncF plasmids with extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 (ST131) and ST405 clonal groups. Antimicrob Agents Chemother. 2013; 57:4736–42.
27). Shin J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011; 63:39–47.
28). Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, De Champs C, et al. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother. 2003; 52:29–35.
Article
29). Cantó n R, Morosini M. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011; 35:977–91.
Article
30). Amá bile-Cuevas CF. Antibiotic resistance: From Darwin to Lederberg to Keynes. Microb Drug Resist. 2013; 19:73–87.
31). Kuo HY, Chang KC, Kuo JW, Yueh HW, Liou ML. Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 2012; 39:33–8.
32). Hegstad K, Samuelsen O, Hegstad J, Sundsfjord A. Molecular methods for detection of antibacterial resistance genes: rationale and applications. Amsterdam D, editor. Antibiotics in Laboratory Medicine. 6th ed.Philadelphia: Wolters Kluwer Health;2015. p. 408–49.
33). Adler A, Gniadkowski M, Baraniak A, Izdebski R Fiett J, Hryniewicz W, et al. Transmission dynamics of ESBL-producing Escherichia coli clones in rehabilitation wards at a tertiary care centre. Clin Microbiol Infect. 2012; 18:497–505.
34). Ruiz del Castillo B, Vinué L, Romá n EJ, Guerra B, Carattoli A, Torres C, et al. Molecular characterization of multiresistant Escherichia coli producing or not extended- spectrum β- lactamases. BMC Microbiol. 2013; 13:84.
35). Kim J, Bae IK, Jeong SH, Chang CL, Lee CH, Lee K. Characterization of IncF plasmids carrying the bla CTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J Antimicrob Chemother. 2011; 66:1263–8.
36). Matsumura Y, Yamamoto M, Nagao M, Hotta G, Matsushima A, Ito Y, et al. Emergence and spread of B2-ST131-O25b, B2-ST131-O16 and D-ST405 clonal groups among extended-spectrum-β-lactamase-producing Escherichia coli in Japan. J Antimicrob Chemother. 2012; 67:2612–20.
37). Mnif B, Harhour H, Jdidi J, Mahjoubi F, Genel N, Arlet G, et al. Molecular epidemiology of extended- spectrum β- lactamase- producing Escherichia coli in Tunisia and characterization of their virulence factors and plasmid addiction systems. BMC Microbiol. 2013; 13:147.
38). Poirel L, Lartigue MF, Decousser JW, Nordmann P. ISEcp1B- mediated transposition of bla CTX- M in Escherichia coli. Antimicrob Agents Chemother. 2005; 49:447–50.
39). Readman JB, Dickson G, Coldham NG. Translational inhibition of CTX-M extended- spectrum β- lactamase in clinical strains of
Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime. Front Microbiol. 2016; 7:373.
Article