Korean J Lab Med.  2009 Feb;29(1):17-24. 10.3343/kjlm.2009.29.1.17.

Antibiotic Resistance Mechanisms of Escherichia coli Isolates from Urinary Specimens

Affiliations
  • 1Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea. kscpjsh@yuhs.ac
  • 2Department of Physical Medicine and Rehabilitation, Kosin University College of Medicine, Busan, Korea.
  • 3Research Institute for Antimicrobial Resistance, Kosin University College of Medicine, Busan, Korea.

Abstract

BACKGROUND: This study was designed to characterize urinary isolates of Escherichia coli that produce extended-spectrum beta-lactamases (ESBLs) and to determine the prevalence of other antimicrobial resistance genes.
METHODS
A total of 264 non-duplicate clinical isolates of E. coli were recovered from urine specimens in a tertiary-care hospital in Busan in 2005. Antimicrobial susceptibility was determined by disk diffusion and agar dilution methods, ESBL production was confirmed using the double-disk synergy (DDS) test, and antimicrobial resistance genes were detected by direct sequencing of PCR amplification products. E. coli isolates were classified into four phylogenetic biotypes according to the presence of chuA, yjaA, and TSPE4.
RESULTS
DDS testing detected ESBLs in 27 (10.2%) of the 264 isolates. The most common type of ESBL was CTX-M-15 (N=14), followed by CTX-M-3 (N=8) and CTX-M-14 (N=6). All of the ESBL-producing isolates were resistant to ciprofloxacin. PCR experiments detected genes encoding DHA-1 and CMY-10 AmpC beta-lactamases in one and two isolates, respectively. Also isolated were 5 isolates harboring 16S rRNA methylases, 2 isolates harboring Qnr, and 19 isolates harboring AAC(6')-Ib-cr. Most ESBL-producing isolates clustered within phylogenetic groups B2 (N=14) and D (N=7).
CONCLUSION
CTX-M enzymes were the dominant type of ESBLs in urinary isolates of E. coli, and ESBL-producing isolates frequently contained other antimicrobial resistance genes. More than half of the urinary E. coli isolates harboring CTX-M enzymes were within the phylogenetic group B2.

Keyword

Escherichia coli; Extended-spectrum beta-lactamases (ESBL); Phylogenetic group

MeSH Terms

Bacterial Proteins/biosynthesis/*genetics
Bacteriuria/microbiology
Ciprofloxacin/pharmacology
Disk Diffusion Antimicrobial Tests
Drug Resistance, Multiple, Bacterial/*genetics
Escherichia coli/*drug effects/enzymology/isolation & purification
Humans
Methyltransferases/genetics
Phylogeny
beta-Lactamases/biosynthesis/*genetics

Cited by  1 articles

Marker Pen Device with Concentration Gradient Nib for Antibiotic Susceptibility Testing
Yong-Gyun Jung, Young-Ran Yun, Suk-Heung Song, Wook Park
J Korean Med Sci. 2018;33(33):.    doi: 10.3346/jkms.2018.33.e224.


Reference

1.Piatti G., Mannini A., Balistreri M., Schito AM. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol. 2008. 46:480–7.
2.Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004. 48:1–14.
Article
3.Kim J., Lim YM., Jeong YS., Seol SY. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum β-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother. 2005. 49:1572–5.
4.Rossolini GM., D'Andrea MM., Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect. 2008. 14(S):33–41.
Article
5.Bae IK., Lee YN., Jeong SH., Lee K., Yong D., Lee J, et al. Emergence of CTX-M-12, PER-1 and OXA-30 β-lactamase-producing Klebsiella pneumoniae. Korean J Clin Microbiol. 2006. 9:102–9. (배일권, 이유내, 정석훈, 이경원, 용동은, 이종욱 등. CTX-M-12, PER-1 및 OXA-30 β- Lactamase 생성 Klebsiella pneumoniae의 출현. 대한임상미생물학회지 2006;9: 102-9.).
6.Philippon A., Arlet G., Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002. 46:1–11.
Article
7.Lee K., Lee M., Shin JH., Lee MH., Kang SH., Park AJ, et al. Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb Drug Resist. 2006. 12:44–9.
8.Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999. 2:38–55.
Article
9.Herzer PJ., Inouye S., Inouye M., Whittam TS. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol. 1990. 172:6175–81.
10.Jeong SH., Bae IK., Lee JH., Sohn SG., Kang GH., Jeon GJ, et al. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol. 2004. 42:2902–6.
11.Jeong JY., Yoon HJ., Kim ES., Lee Y., Choi SH., Kim NJ, et al. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob Agents Chemother. 2005. 49:2522–4.
12.Jeong SH., Bae IK., Kwon SB., Lee JH., Jung HI., Song JS, et al. Investigation of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Lett Appl Microbiol. 2004. 39:41–7.
13.Magnet S., Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev. 2005. 105:477–98.
Article
14.Doi Y., Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007. 45:88–94.
Article
15.Baudry PJ., Nichol K., DeCorby M., Mataseje L., Mulvey MR., Hoban DJ, et al. Comparison of antimicrobial resistance profiles among extended-spectrum β-lactamase-producing and acquired AmpC β-lactamase-producing Escherichia coli isolates from Canadian intensive care units. Antimicrob Agents Chemother. 2008. 52:1846–9.
16.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement: Approved Standard M100-S17. Wayne, PA: Clinical Laboratory Standards Institute;2007.
17.Sambrook J, Fritsch EF, editors. Molecular cloning: a laboratory manual. 2nd ed.NY: Cold Spring Harbor Laboratory Press;1989.
18.Ryoo NH., Kim EC., Hong SG., Park YJ., Lee K., Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
19.Song W., Kim JS., Kim HS., Yong D., Jeong SH., Park MJ, et al. Increasing trend in the prevalence of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006. 55:219–24.
20.Cattoir V., Poirel L., Rotimi V., Soussy CJ., Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007. 60:394–7.
21.Fihman V., Lartigue MF., Jacquier H., Meunier F., Schnepf N., Raskine L, et al. Appearance of aac(6′)-Ib-cr gene among extended-spectrum beta-lactamase-producing Enterobacteriaceae in a French hospital. J Infect. 2008. 56:454–9.
22.Fritsche TR., Castanheira M., Miller GH., Jones RN., Armstrong ES. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother. 2008. 52:1843–5.
23.Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000. 66:4555–8.
24.Akram M., Shahid M., Khan AU. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann Clin Microbiol Antimicrob. 2007. 6:4–10.
Article
25.Mazzei T., Cassetta MI., Fallani S., Arrigucci S., Novelli A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006. 28(S):S35–41.
Article
26.Ko CS., Sung JY., Koo SH., Kwon GC., Shin SY., Park JW. Prevalence of Extended-Spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med. 2007. 27:344–50. (고지선, 성지연, 구선회, 권계철, 신소연, 박종우. 대전지역에서 분리된 Escherichia coli와 Klebsiella pneumoniae의 Extended-spectrum β-lactamase 생성현황. 대한진단검사의학회지 2007;27: 344-50.).
27.Hong SG., Kim S., Jeong SH., Chang CL., Cho SR., Ahn JY, et al. Prevalence and diversity of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol. 2003. 6:149–55. (홍성근, 김선주, 정석훈, 장철훈, 조성란, 안지영 등. 국내에서 분리된 Extended-Spectrum β-Lactamase 생성 Escherichia coli와 Klebsiella pneumoniae의 빈도 및 유형. 대한임상미생물학회지 2003;6: 149-55.).
28.Pitout JD., Nordmann P., Laupland KB., Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005. 56:52–9.
29.Johnson JR., Delavari P., Kuskowski M., Stell AL. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis. 2001. 183:78–88.
30.Johnson JR., Kuskowski MA., Owens K., Gajewski A., Winokur PL. Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. J Infect Dis. 2003. 188:759–68.
31.Pitout JD., Laupland KB., Church DL., Menard ML., Johnson JR. Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum β-lactamases. Antimicrob Agents Chemother. 2005. 49:4667–70.
Full Text Links
  • KJLM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr