1. Sakai Y, Kawahito S, Takaishi K, Mita N, Kinoshita H, Hatakeyama N, Azma T, Nakaya Y, Kitahata H. Propofol-induced relaxation of rat aorta is altered by agingt. J Med Invest. 2014; 61:278–284.
2. Klockgether-Radke AP, Schulze H, Neumann P, Hellige G. Activation of the K+ channel BK(Ca) is involved in the relaxing effect of propofol on coronary arteries. Eur J Anaesthesiol. 2004; 21:226–230.
3. Liu Y, Chang H, Niu L, Xue W, Zhang X, Liang Y, Zhang M. Effects of propofol on responses of rat isolated renal arteriole to vasoactive agents. Vascul Pharmacol. 2009; 51:182–189.
4. Machała W, Szebla R. Effects of propofol induction on haemodynamics. Anestezjol Intens Ter. 2008; 40:223–226.
5. Funayama T, Aida S, Matsukawa T, Okada K, Kumazawa T. Systemic, but not pulmonary, hemodynamics are depressed during combined high thoraco-cervical epidural and general anesthesia in dogs. Can J Anaesth. 2003; 50:454–459.
6. Tanaka H, Yamanoue T, Kuroda M, Kawamoto M, Yuge O. Propofol relaxes extrapulmonary artery but not intrapulmonary artery through nitric oxide pathway. Hiroshima J Med Sci. 2001; 50:61–64.
7. Zhang G, Cui J, Chen Y, Ma J. The relaxant effect of propofol on isolated rat intrapulmonary arteries. Korean J Physiol Pharmacol. 2014; 18:377–381.
8. Kondo U, Kim SO, Nakayama M, Murray PA. Pulmonary vascular effects of propofol at baseline, during elevated vasomotor tone, and in response to sympathetic alpha- and beta-adrenoreceptor activation. Anesthesiology. 2001; 94:815–823.
9. Ogawa K, Tanaka S, Murray PA. Propofol potentiates phenylephrine-induced contraction via cyclooxygenase inhibition in pulmonary artery smooth muscle. Anesthesiology. 2001; 94:833–839.
10. Ge Y, Cheng J, Xi W, Zheng S, Kang Y, Jiang Y. Effect of ulinastatin on thromboxane B2 and deep vein thrombosis in elderly patients after hip joint replacement. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010; 35:1278–1281.
11. Hei ZQ, Huang HQ, Luo CF, Li SR, Luo GJ. Changes of nitric oxide and endothelin, thromboxane A2 and prostaglandin in cirrhotic patients undergoing liver transplantation. World J Gastroenterol. 2006; 12:4049–4051.
12. Tachtsi M, Pitoulias G, Kostoglou C, Papadimitriou D. The proinflammatory mediator's production from ischemic brain during carotid endarterectomy. Int Angiol. 2011; 30:429–433.
13. Undas A, Siudak Z, Topór-Mądry R, Leśniak M, Tracz W. Simvastatin administration reduces thromboxane production in subjects taking aspirin: links between aspirin resistance and thrombin generation. Int J Cardiol. 2012; 154:59–64.
14. Rich GF, Roos CM, Anderson SM, Daugherty MO, Uncles DR. Direct effects of intravenous anesthetics on pulmonary vascular resistance in the isolated rat lung. Anesth Analg. 1994; 78:961–966.
15. Nakahata N, Takano H, Ohizumi Y. Thromboxane A2 receptor-mediated tonic contraction is attributed to an activation of phosphatidylcholine-specific phospholipase C in rabbit aortic smooth muscles. Life Sci. 2000; 66:PL 71-76.
16. Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011; 164:894–912.
17. Bradbury DA, Newton R, Zhu YM, Stocks J, Corbett L, Holland ED, Pang LH, Knox AJ. Effect of bradykinin, TGF-beta1, IL-1beta, and hypoxia on COX-2 expression in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2002; 283:L717–L725.
18. Bradbury DA, Newton R, Zhu YM, El-Haroun H, Corbett L, Knox AJ. Cyclooxygenase-2 induction by bradykinin in human pulmonary artery smooth muscle cells is mediated by the cyclic AMP response element through a novel autocrine loop involving endogenous prostaglandin E2, E-prostanoid 2 (EP2), and EP4 receptors. J Biol Chem. 2003; 278:49954–49964.