1). Higuchi Y., Hattori H., Kume T., Tsuji M., Akaike A., Furusho K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol. 1998. 342:47–9.
Article
2). Ishida A., Trescher WH., Lange MS., Johnston MV. Prolonged suppression of brain nitric oxide synthase activity by 7-nitroindazole protects against cerebral hypoxic-ischemic injury in neonatal rat. Brain Dev. 2001. 23:349–54.
Article
3). Kumral A., Baskin H., Gokmen N., Yilmaz O., Genc K., Genc S, et al. Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin? Biol Neonate. 2004. 85:51–4.
Article
4). Niwa M., Inao S., Takayasu M., Kawai T., Kajita Y., Nihashi T, et al. Time course of expression of three nitric oxide synthase isoforms after transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo). 2001. 41:63–72. discussion 72-3.
Article
5). Zhang ZG., Chopp M., Zaloga C., Pollock JS., Förstermann U. Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats. Stroke. 1993. 24:2016–21. discussion 2021-2.
Article
6). Samdani AF., Dawson TM., Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke. 1997. 28:1283–8.
Article
7). Ishida A., Ishiwa S., Trescher WH., Nakajima W., Lange MS., Blue ME, et al. Delayed increase in neuronal nitric oxide synthase immunoreactivity in thalamus and other brain regions after hypoxic-ischemic injury in neonatal rats. Exp Neurol. 2001. 168:323–33.
Article
8). Garcia-Bonilla L., Moore JM., Racchumi G., Zhou P., Butler JM., Iadecola C, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014. 193:2531–7.
Article
9). Voituron N., Jeton F., Cholley Y., Hasnaoui-Saadani RE., Marchant D., Quidu P, et al. Catalyzing role of erythropoietin on the nitric oxide central pathway during the ventilatory responses to hypoxia. Physiol Rep. 2014. 2:e00223.
Article
10). Calapai G., Marciano MC., Corica F., Allegra A., Parisi A., Frisina N, et al. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol. 2000. 401:349–56.
Article
11). Lombardero M., Kovacs K., Scheithauer BW. Erythropoietin: a hormone with multiple functions. Pathobiology. 2011. 78:41–53.
Article
12). Rangarajan V., Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol. 2014. 51:481–8.
Article
13). Sakanaka M., Wen TC., Matsuda S., Masuda S., Morishita E., Nagao M, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Nat Acad Sci U S A. 1998. 95:4635–40.
Article
14). Gonzalez FF., Larpthaveesarp A., McQuillen P., Derugin N., Wendland M., Spadafora R, et al. Erythropoietin increases neurogenesis and oligoden-drogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 2013. 44:753–8.
Article
15). Iwai M., Cao G., Yin W., Stetler RA., Liu J., Chen J. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007. 38:2795–803.
Article
16). Elmahdy H., El-Mashad AR., El-Bahrawy H., El-Gohary T., El-Barbary A., Aly H. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial. Pediatrics. 2010. 125:e1135–42.
Article
17). Wu YW., Bauer LA., Ballard RA., Ferriero DM., Glidden DV., Mayock DE, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012. 130:683–91.
Article
18). Fan X., van Bel F., van der Kooij MA., Heijnen CJ., Groenendaal F. Hypothermia and erythropoietin for neuroprotection after neonatal brain damage. Pediatr Res. 2013. 73:18–23.
Article
19). Maiese K., Chong ZZ., Hou J., Shang YC. Erythropoietin and oxidative stress. Curr Neurovasc Res. 2008. 5:125–42.
Article
20). Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods. 1997. 71:143–55.
Article
21). Genc K., Genc S., Baskin H., Semin I. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligo-dendrocytes. Physiol Res. 2006. 55:33–8.
Article
22). Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983. 65:55–63.
Article
23). Rice JE 3rd., Vannucci RC., Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981. 9:131–41.
Article
24). Kumral A., Ozer E., Yilmaz O., Akhisaroglu M., Gokmen N., Duman N, et al. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol Neonate. 2003. 83:224–8.
Article
25). Digicaylioglu M., Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature. 2001. 412:641–7.
26). Ioroi T., Yonetani M., Nakamura H. Effects of hypoxia and reoxygenation on nitric oxide production and cerebral blood flow in developing rat striatum. Pediatr Res. 1998. 43:733–7.
Article
27). Zhang ZG., Chopp M., Gautam S., Zaloga C., Zhang RL., Schmidt HH, et al. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res. 1994. 654:85–95.
28). Huang PL. Nitric oxide and cerebral ischemic preconditioning. Cell Calcium. 2004. 36:323–9.
Article
29). De Pascali F., Hemann C., Samons K., Chen CA., Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-gluta-thionylation. Biochemistry. 2014. 53:3679–88.
Article
30). Ferriero DM., Holtzman DM., Black SM., Sheldon RA. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis. 1996. 3:64–71.
Article
31). Iadecola C., Zhang F., Xu S., Casey R., Ross ME. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. JCereb Blood Flow Metab. 1995. 15:378–84.
Article
32). Morishita E., Masuda S., Nagao M., Yasuda Y., Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience. 1997. 76:105–16.
Article
33). Yu X., Shacka JJ., Eells JB., Suarez-Quian C., Przygodzki RM., Beleslin-Cokic B, et al. Erythropoietin receptor signalling is required for normal brain development. Development. 2002. 129:505–16.
Article
34). Reitmeir R., Kilic E., Kilic U., Bacigaluppi M., ElAli A., Salani G, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain. 2011. 134(Pt 1):84–99.
Article
35). Xiong Y., Mahmood A., Qu C., Kazmi H., Zhang ZG., Noguchi CT, et al. Erythropoietin improves histological and functional outcomes after traumatic brain injury in mice in the absence of the neural erythropoietin receptor. J Neurotrauma. 2010. 27:205–15.
Article
36). Iwai M., Stetler RA., Xing J., Hu X., Gao Y., Zhang W, et al. Enhanced oligo-dendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke. 2010. 41:1032–7.
Article
37). Zhu C., Kang W., Xu F., Cheng X., Zhang Z., Jia L, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic en-cephalopathy. Pediatrics. 2009. 124:e218–26.
Article
38). Dawson DA. Nitric oxide and focal cerebral ischemia: multiplicity of actions and diverse outcome. Cerebrovasc Brain Metab Rev. 1994. 6:299–324.
39). Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997. 20:132–9.
Article