J Lipid Atheroscler.  2017 Jun;6(1):15-21. 10.12997/jla.2017.6.1.15.

Diagnostic and Therapeutic Approach of Carotid and Cerebrovascular Plaque on the Basis of Vessel Imaging

Affiliations
  • 1Department of Stroke Neurology, Seonam University Myongji Hospital, Goyang-si, Korea. neurotector.jhp@gmail.com

Abstract

Atherosclerosis, characterized by chronic systemic inflammation with plaque formation, is one of the major causes of cerebrovascular disease. Recent advances in imaging technologies can help further understand the overall process and biology of plaque formation and rupture. Thus, these imaging techniques could aid clinicians to make better decision for risk stratification, therapeutic planning, and prediction of future cerebrovascular event. Ultrasonography, magnetic resonance imaging, and positron emission tomography are the rapidly-evolving imaging modalities dealing with assessment of atherosclerotic plaque. By advances in imaging technology for evaluating plaque, we can characterize the vulnerability of plaque in-vivo, understand the composition and activity of plaque, assess therapeutic response to treatment, and ultimately predict the overall risk of future cerebrovascular episodes. In this review, we will introduce current understanding of various advanced imaging modalities and clinical application of these imaging technologies.

Keyword

Atherosclerosis; Plaque; Imaging; Carotid artery disease; Cerebrovascular disease

MeSH Terms

Atherosclerosis
Biology
Carotid Artery Diseases
Cerebrovascular Disorders
Inflammation
Magnetic Resonance Imaging
Plaque, Atherosclerotic
Positron-Emission Tomography
Rupture
Ultrasonography

Reference

1. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012; 32:2045–2051.
Article
2. Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Völzke H, Tuomainen TP, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012; 379:2053–2062.
Article
3. Ho SS. Current status of carotid ultrasound in atherosclerosis. Quant Imaging Med Surg. 2016; 6:285–296.
Article
4. Spence JD, Parraga G. Three-dimensional ultrasound of carotid plaque. Neuroimaging Clin N Am. 2016; 26:69–80.
Article
5. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002; 33:2916–2922.
6. Mathiesen EB, Johnsen SH, Wilsgaard T, Bønaa KH, Løchen ML, Njølstad I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: a 10-year follow-up of 6584 men and women: the Tromsø Study. Stroke. 2011; 42:972–978.
Article
7. Spence JD. Time course of atherosclerosis regression. Atherosclerosis. 2014; 235:347–348.
Article
8. Wannarong T, Parraga G, Buchanan D, Fenster A, House AA, Hackam DG, et al. Progression of carotid plaque volume predicts cardiovascular events. Stroke. 2013; 44:1859–1865.
Article
9. Spence JD. Carotid ultrasound phenotypes are biologically distinct. Arterioscler Thromb Vasc Biol. 2015; 35:1910–1913.
Article
10. Græbe M, Entrekin R, Collet-Billon A, Harrison G, Sillesen H. Reproducibility of two 3-D ultrasound carotid plaque quantification methods. Ultrasound Med Biol. 2014; 40:1641–1649.
Article
11. Kalashyan H, Shuaib A, Gibson PH, Romanchuk H, Saqqur M, Khan K, et al. Single sweep three-dimensional carotid ultrasound: reproducibility in plaque and artery volume measurements. Atherosclerosis. 2014; 232:397–402.
Article
12. Brinjikji W, Rabinstein AA, Lanzino G, Murad MH, Williamson EE, DeMarco JK, et al. Ultrasound characteristics of symptomatic carotid plaques: a systematic review and meta-analysis. Cerebrovasc Dis. 2015; 40:165–174.
Article
13. Stone GW. In search of vulnerable plaque. Circ Cardiovasc Imaging. 2012; 5:428–430.
Article
14. Brinjikji W, Huston J 3rd, Rabinstein AA, Kim GM, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg. 2016; 124:27–42.
Article
15. Rafailidis V, Chryssogonidis I, Tegos T, Kouskouras K, Charitanti-Kouridou A. Imaging of the ulcerated carotid atherosclerotic plaque: a review of the literature. Insights Imaging. 2017; 8:213–225.
Article
16. Hitchner E, Zhou W. Utilization of intravascular ultrasound during carotid artery stenting. Int J Angiol. 2015; 24:185–188.
Article
17. Umemoto T, Pacchioni A, Nikas D, Reimers B. Recent developments of imaging modalities of carotid artery stenting. J Cardiovasc Surg (Torino). 2017; 58:25–34.
Article
18. Kilic ID, Caiazzo G, Fabris E, Serdoz R, Abou-Sherif S, Madden S, et al. Near-infrared spectroscopy-intravascular ultrasound: scientific basis and clinical applications. Eur Heart J Cardiovasc Imaging. 2015; 16:1299–1306.
Article
19. Štěchovský C, Hájek P, Horváth M, Špaček M, Veselka J. Near-infrared spectroscopy combined with intravascular ultrasound in carotid arteries. Int J Cardiovasc Imaging. 2016; 32:181–188.
Article
20. Singh N, Moody AR, Roifman I, Bluemke DA, Zavodni AE. Advanced MRI for carotid plaque imaging. Int J Cardiovasc Imaging. 2016; 32:83–89.
Article
21. Mossa-Basha M, Wasserman BA. Low-grade carotid stenosis: implications of MR imaging. Neuroimaging Clin N Am. 2016; 26:129–145.
22. Hjelmgren O, Schmidt C, Johansson L, Bergström GM. Comparison between magnetic resonance imaging and B-mode ultrasound in detecting and estimating the extent of human carotid atherosclerosis. Clin Physiol Funct Imaging. Forthcoming 2017.
Article
23. Sun J, Zhao XQ, Balu N, Neradilek MB, Isquith DA, Yamada K, et al. Carotid plaque lipid content and fibrous cap status predict systemic CV outcomes: the MRI substudy in aim-high. JACC Cardiovasc Imaging. 2017; 10:241–249.
Article
24. Yuan C, Parker DL. Three-dimensional carotid plaque MR imaging. Neuroimaging Clin N Am. 2016; 26:1–12.
Article
25. Virani SS, Ballantyne CM. From plaque burden to plaque composition: toward personalized risk assessment. JACC Cardiovasc Imaging. 2017; 10:250–252.
26. Tarkin JM, Dweck MR, Evans NR, Takx RA, Brown AJ, Tawakol A, et al. Imaging atherosclerosis. Circ Res. 2016; 118:750–769.
Article
27. Ripa RS, Pedersen SF, Kjær A. PET/MR imaging in vascular disease: atherosclerosis and inflammation. PET Clin. 2016; 11:479–488.
28. Selwaness M, Hameeteman R, Van't Klooster R, Van den Bouwhuijsen Q, Hofman A, Franco OH, et al. Determinants of carotid atherosclerotic plaque burden in a stroke-free population. Atherosclerosis. 2016; 255:186–192.
Article
29. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014; 11:443–457.
Article
30. Lau JM, Laforest R, Nensa F, Zheng J, Gropler RJ, Woodard PK. Cardiac applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017; 25:325–333.
Article
31. Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016; 43:270–279.
Article
32. Banerjee C, Chimowitz MI. Stroke caused by atherosclerosis of the major intracranial arteries. Circ Res. 2017; 120:502–513.
Article
33. Qiao Y, Anwar Z, Intrapiromkul J, Liu L, Zeiler SR, Leigh R, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke. 2016; 47:434–440.
Article
34. Shi MC, Wang SC, Zhou HW, Xing YQ, Cheng YH, Feng JC, et al. Compensatory remodeling in symptomatic middle cerebral artery atherosclerotic stenosis: a high-resolution MRI and microemboli monitoring study. Neurol Res. 2012; 34:153–158.
Article
35. Alexander MD, Yuan C, Rutman A, Tirschwell DL, Palagallo G, Gandhi D, et al. High-resolution intracranial vessel wall imaging: imaging beyond the lumen. J Neurol Neurosurg Psychiatry. 2016; 87:589–597.
Article
36. Gutierrez J, Elkind MS, Virmani R, Goldman J, Honig L, Morgello S, et al. A pathological perspective on the natural history of cerebral atherosclerosis. Int J Stroke. 2015; 10:1074–1080.
Article
37. Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw JJ, Amarenco P. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke. 2008; 39:1142–1147.
Article
38. Cao Y, Sun Y, Zhou B, Zhao H, Zhu Y, Xu J, et al. Atherosclerotic plaque burden of middle cerebral artery and extracranial carotid artery characterized by MRI in patients with acute ischemic stroke in China: association and clinical relevance. Neurol Res. 2017; 39:344–350.
Article
39. Zhu XJ, Du B, Lou X, Hui FK, Ma L, Zheng BW, et al. Morphologic characteristics of atherosclerotic middle cerebral arteries on 3T high-resolution MRI. AJNR Am J Neuroradiol. 2013; 34:1717–1722.
Article
40. Dieleman N, Yang W, Abrigo JM, Chu WC, van der, Siero JC, et al. Magnetic resonance imaging of plaque morphology, burden, and distribution in patients with symptomatic middle cerebral artery stenosis. Stroke. 2016; 47:1797–1802.
Article
41. Turan TN, Rumboldt Z, Granholm AC, Columbo L, Welsh CT, Lopes-Virella MF, et al. Intracranial atherosclerosis: correlation between in-vivo 3T high resolution MRI and pathology. Atherosclerosis. 2014; 237:460–463.
Article
42. Yang WJ, Chen XY, Zhao HL, Niu CB, Xu Y, Wong KS, et al. In vitro assessment of histology verified intracranial atherosclerotic disease by 1.5t magnetic resonance imaging: concentric or eccentric? Stroke. 2016; 47:527–530.
Article
43. Xu WH, Li ML, Gao S, Ni J, Zhou LX, Yao M, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis. 2010; 212:507–511.
Article
44. Chung GH, Kwak HS, Hwang SB, Jin GY. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis. Eur J Radiol. 2012; 81:4069–4074.
Article
45. Niu PP, Yu Y, Zhou HW, Liu Y, Luo Y, Guo ZN, et al. Vessel wall differences between middle cerebral artery and basilar artery plaques on magnetic resonance imaging. Sci Rep. 2016; 6:38534.
Article
Full Text Links
  • JLA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr