1). Anderson JAD. Back pain and occupation. The lumbar Spine and Back Pain. Third Edition, Edited by MIV Jayson. London. Churchill Livingstone;1987. PP2-36.
2). Aydelotte MB, Greenhill RR, Kuettner KE. Differ -ences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tiss Res. 18:223–234. 1988.
3). Boden SD, Schimandle JH, Hutton WC. 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: Study of dose, carrier, and species. Spine. 20:2633–2644. 1995.
4). Boden SD, Schimandle JH, Hutton WC, et al. 199 5 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part I: Biology of spinal fusion. Spine. 20:2626–2632. 1995.
5). Borenstein D. Epidemiology, etiology, diagnostic evaluation, and treatment of low back pain. Curr Opin Rheumatol. 4:226–232. 1992.
Article
6). Brown GL, Curtsinger LJ, White M, et al. Acceleration of tensile strength of incisions treated with EGF and TGF-. Ann. Surg. 208:788–794. 1988.
7). Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine. 20:1307–1314. 1995.
Article
8). Butler D, Trafimow JH, Andersson GB, et al. Discs degenerate before facets. Spine. 15:111–113. 1990.
Article
9). Chelberg MK, Banks GM, Geiger DF, et al. Identification of heterogenous cell populations in normal human intervertebral disc. J Anat. 186:43–53. 1995.
10). Chiba K, Andersson GBJ, Masuda K, et al. Metaboli sm of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine. 22:2885–2893. 1997.
11). Evans CH, Robbins PD. Possible orthopaedic applications of gene therapy. J Bone Joint Surg(Am). 77:1103–1113. 1995.
Article
12). Eyre D, Benya P, Buckwalter J, et al. Intervertebral disc: Part B. Basic science perspective. New Perspectives in Low Back Pain. Park Ridge, IL: American Academy of Orthopaedic Surgeons;p. 147–207. 1989.
13). Graham FL and Eb Ajvd. A new technique for assay of infectivity of human adenovirus 5 DNA. Virol. 52:456–467. 1973.
14). Guo J, Jourdian GW, McCallum DK. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Conn Tiss Res. 19:277–97. 1989.
Article
15). Gruber HE, Fisher EC, Desani B, et al. Human intervertebral disc cells from the annulus: three dimensional culture in agarose or alginate and responsiveness to TGF-b1. Exp Cell Res. 235:13–21. 1997.
16). Hauselmann HJ, Fernandes RJ, Mok SS, et al. Phe no -typic stability of bovine articular chondrocytes after longterm culture in alginate beads. J Cell Sci. 107:17–27. 1994.
17). Lipson SJ, Muir H. Proteoglycans in experimental intervertebral disc degeneration. Spine. 6:194–210. 1981.
Article
18). Maldonado BA, Oegema TR. Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res. 10:677–690. 1992.
Article
19). Mittereder N, March KL, Trapnell BC. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol. 70:7498–7509. 1996.
Article
20). Moon S-H, Kang JD, Nishida K, et al. Human cervical intervertebral disc cells are susceptible to adenovirus-mediated gene therapy. Proceedings of Cervical Spine Research Society. 1999.
21). Moon S-H, Nishida K, Kang JD, et al. Human intervertebral disc cells are genetically modifiable in-vitro by ade -novirus-mediated gene transfer: Implications for the treatment of degenerative disc disease. Proceedings of North American Spine Society. 1999.
22). Nishida K, Kang JD, Suh J-K, et al. Adenovirus -mediat -ed gene transfer to nucleus pulposus cells: Implication for the treatment of intervertebral disc degeneration. Spine. 23:2437–2443. 1998.
23). Nishida K, Kang JD, Gilbertson LG, et al. Mod ulation of biologic activity of the rabbit intervertebral disc by gene therapy: An in vivo study of adenovirus-mediated transfer of the human transforming growth factors 1 encoding gene. Spine. 24:2419–2425. 1999.
24). Osada R, Oshima H, Ishihara H, et al. Autocrine/parac-rine mechanism of insulin-like growth factor-1 secretion, and the effect of insuline-like growth factors-1 on proteoglycan synthesis in bovine intervertebral discs. J Orhtop Res. 14:690–699. 1996.
25). Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 80:35–47. 1998.
Article
26). Siegel JA, Lonner BS, Grande DA, James T. The effect of transforming growth factor-beta on intervertebral disc tissue. Proceedings of ISSLS, 213A, Kona Hawaii. 1999.
27). Sprugel KH, McPherson JM, Clowes AW, et al. Effect of growth factors in vivo. Am J Pathol. 129:601–613. 1987.
28). Takemi K, Kumano F, An H, et al. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annu -lus fibrosus cells to repair their matrix after chondroitinase ABC-induced chemonucleolysis. Tranc Orthop Res Soc. 201:1999.
29). Thompson JP, Oegema TR Jr, Bradford DS. Stimulation of mature cannine intervertebral disc by growth factors. Spine. 16:253–260. 1991.
30). Wakefield LM, Winokur TS, Hollands RS, et al. Re-combinant latent transforming growth factor ß 1 has a longer plasma half-life in rats than active transforming growth factor ß 1, and a different tissue distribution. J Clin Invest. 86:1976–1984. 1990.
31). Yeh P, Perricaudet M. Advances in adenoviral vectors: from genetic engineering to their biology. FASEB Journal. 11:615–623. 1997.
Article