1. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984; 91:564–79.
Article
2. Rohen JW, Lütjen-Drecoll E, Flügel C. . Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res. 1993; 56:683–92.
3. Hamard P, Blondin C, Debbasch C. . In vitro effects of preserved and unpreserved antiglaucoma drugs on apoptotic marker expression by human trabecular cells. Graefes Arch Clin Exp Ophthalmol. 2003; 241:1037–43.
Article
4. Yee RW. The effect of drop vehicle on the efficacy and side effects of topical glaucoma therapy: a review. Curr Opin Ophthalmol. 2007; 18:134–9.
Article
5. Wilhelmus KR. The Draize eye test. Surv Ophthalmol. 2001; 45:493–515.
Article
6. Doucet O, Lanvin M, Thillou C. . Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products. Toxicol In Vitro. 2006; 20:499–512.
Article
7. Khoh-Reiter S, Jessen BA. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model. BMC Ophthalmol. 2009; 9:5.
Article
8. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65:55–63.
Article
9. Freimoser FM, Jakob CA, Aebi M, Tuor U. The MTT [3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol. 1999; 65:3727–9.
Article
10. Grimes PA, Stone RA, Laties AM, Li W. Carboxyfluorescein. A probe of the blood-ocular barriers with lower membrane permeability than fluorescein. Arch Ophthalmol. 1982; 100:635–9.
11. Araie M. Carboxyfluorescein. A dye for evaluating the corneal endothelial barrier function in vivo. Exp Eye Res. 1986; 42:141–50.
Article
12. Araie M. Barrier function of corneal endothelium and the intra-ocular irrigating solutions. Arch Ophthalmol. 1986; 104:435–8.
Article
13. Tsuboi S, Pederson JE. Permeability of the isolated dog retinal pigment epithelium to carboxyfluorescein. Invest Ophthalmol Vis Sci. 1986; 27:1767–70.
14. Blair NP, Rusin MM. Blood-retinal barrier permeability to carbox-yfluorescein and fluorescein in monkeys. Graefes Arch Clin Exp Ophthalmol. 1986; 224:419–22.
Article
15. Grimes PA. Carboxyfluorescein transfer across the blood-retinal barrier evaluated by quantitative fluorescence microscopy: comparison with fluorescein. Exp Eye Res. 1988; 46:769–83.
Article
16. Grimes PA. Carboxyfluorescein distribution in ocular tissues of normal and diabetic rats. Curr Eye Res. 1988; 7:981–8.
Article
17. Kimura M, Araie M, Koyano S. Movement of carboxyfluorescein across retinal pigment epithelium-choroid. Exp Eye Res. 1996; 63:51–6.
Article
18. Lei Y, Stamer WD, Wu J, Sun X. Oxidative stress impact on barrier function of porcine angular aqueous plexus cell monolayers. Invest Ophthalmol Vis Sci. 2013; 54:4827–35.
Article
19. Burke AG, Zhou W, O'Brien ET. . Effect of hydrostatic pressure gradients and Na2EDTA on permeability of human Schlemm's canal cell monolayers. Curr Eye Res. 2004; 28:391–8.
Article
20. Nakagawa S, Usui T, Yokoo S. . Toxicity evaluation of antiglaucoma drugs using stratified human cultivated corneal epithelial sheets. Invest Ophthalmol Vis Sci. 2012; 53:5154–60.
Article
21. Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012; 47:66–80.
Article
22. Sibayan SA, Latina MA, Sherwood ME. . Apoptosis and morphologic changes in drugtreated trabecular meshwork cells in vitro. Exp Eye Res. 1998; 66:521–9.
Article