J Korean Neurosurg Soc.  2015 Sep;58(3):167-174. 10.3340/jkns.2015.58.3.167.

Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain: A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease

Affiliations
  • 1Department of Neurosurgery, Chung-Ang University College of Medicine, Seoul, Korea. nspsw@cau.ac.kr

Abstract


OBJECTIVE
This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD).
METHODS
Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done.
RESULTS
In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis.
CONCLUSION
Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.

Keyword

Burr hole; Bone marrow; Stem cell; Moyamoya disease; Angiogenesis; Neurogenesis

MeSH Terms

Animals
Bone Marrow
Brain Injuries
Brain*
Bromodeoxyuridine
Infarction, Middle Cerebral Artery
Ischemia
Moyamoya Disease*
Nestin
Neurogenesis
Rabeprazole
Rats*
Rats, Sprague-Dawley
Stem Cells*
Trephining
Vascular Endothelial Growth Factor A
Bromodeoxyuridine
Vascular Endothelial Growth Factor A

Figure

  • Fig. 1 Possible treatment mechanism for multiple cranial burr hole surgery. In moyamoya disease, calvarial bone marrow-derived stem cells migrate into the ischemic cerebral cortex through multiple cranial burr holes and play a role in angiogenesis and neurogenesis.

  • Fig. 2 The site of burr hole trephination. A 2-mm-diameter burr hole trephination was made 3 mm lateral and 3 mm posterior to the bregma.

  • Fig. 3 Schematic flow sheet for this study. BrdU : 5-bromodeoxyuridine, IP : intraperitoneal.

  • Fig. 4 Immunohistochemical stain with BrdU. A : Normal control group. B : Burr hole group. C : Ischemia group. D : Ischemia+burr hole group. In the ischemia+burr hole group, BrdU (+) cells (arrow) were found at the cortical injury site beneath the burr hole in the coronal section. In the burr hole group, a few BrdU (+) cells were detected. Original magnification ×200. BrdU : 5-bromodeoxyuridine.

  • Fig. 5 Immunohistochemical stain with CD34 in the ischemia+burr-hole group. CD34 (+) cells (arrow) were detected at the site of the burr hole. A : Original magnification ×100. B : Black rectangle in A, original magnification ×400.

  • Fig. 6 Immunohistochemical stain with VEGF in the ischemia+burr hole group. Many VEGF (+) cells (arrow) were found under the burr hole. A : Original magnification ×100. VEGF (+) cells markedly increased at the cerebral parenchyma adjacent to the cortical incision site below the burr hole. B : Black rectangle in A, original magnification ×400. VEGF : vascular endothelial growth factor.

  • Fig. 7 Immunohistochemical stain with Doblecortin (DCX). In the ischemia +burr hole group, many DCX (+) cells (arrow) are observed at the burr hole site. A : Original magnification ×100. B : Black rectangle in A, original magnification ×400.

  • Fig. 8 Immunohistochemical stain with Nestin in the ischemia+burr hole group. Numerous Nestin (+) cells (arrow) were present at the cerebral parenchyma adjacent to the cortical incision site below the burr hole. A : Original magnification ×100. B : Black rectangle in A, original magnification ×400.


Reference

1. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis : from precursors to network and physiology. Physiol Rev. 2005; 85:523–569. PMID: 15788705.
2. Adelson PD, Scott RM. Pial synangiosis for moyamoya syndrome in children. Pediatr Neurosurg. 1995; 23:26–33. PMID: 7495663.
Article
3. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999; 85:221–228. PMID: 10436164.
Article
4. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002; 106:3009–3017. PMID: 12473544.
Article
5. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005; 57:874–882. PMID: 15929052.
Article
6. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005; 21:1–14. PMID: 15654838.
Article
7. Crain BJ, Tran SD, Mezey E. Transplanted human bone marrow cells generate new brain cells. J Neurol Sci. 2005; 233:121–123. PMID: 15949500.
Article
8. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007; 315:1243–1249. PMID: 17303719.
Article
9. Endo M, Kawano N, Miyaska Y, Yada K. Cranial burr hole for revascularization in moyamoya disease. J Neurosurg. 1989; 71:180–185. PMID: 2746343.
Article
10. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998; 4:1313–1317. PMID: 9809557.
Article
11. Ezura M, Yoshimoto T, Fujiwara S, Takahashi A, Shirane R, Mizoi K. Clinical and angiographic follow-up of childhood-onset moyamoya disease. Childs Nerv Syst. 1995; 11:591–594. PMID: 8556726.
Article
12. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9:669–676. PMID: 12778165.
Article
13. Fukui M. Current state of study on moyamoya disease in Japan. Surg Neurol. 1997; 47:138–143. PMID: 9040816.
Article
14. Furlanetti LL, de Oliveira RS, Santos MV, Farina JA Jr, Machado HR. Multiple cranial burr holes as an alternative treatment for total scalp avulsion. Childs Nerv Syst. 2010; 26:745–749. PMID: 20390420.
Article
15. Gage FH. Mammalian neural stem cells. Science. 2000; 287:1433–1438. PMID: 10688783.
Article
16. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999; 2:260–265. PMID: 10195219.
Article
17. Greaves MF, Brown J, Molgaard HV, Spurr NK, Robertson D, Delia D, et al. Molecular features of CD34 : a hemopoietic progenitor cell-associated molecule. Leukemia. 1992; 6(Suppl 1):31–36. PMID: 1372379.
18. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, et al. VEGF-induced adult neovascularization : recruitment, retention, and role of accessory cells. Cell. 2006; 124:175–189. PMID: 16413490.
Article
19. Harrigan MR, Ennis SR, Masada T, Keep RF. Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery. 2002; 50:589–598. PMID: 11841728.
Article
20. Houkin K, Kuroda S, Ishikawa T, Abe H. Neovascularization (angiogenesis) after revascularization in moyamoya disease. Which technique is most useful for moyamoya disease? Acta Neurochir (Wien). 2000; 142:269–276. PMID: 10819257.
Article
21. Iwashita T, Tada T, Zhan H, Tanaka Y, Hongo K. Harvesting blood stem cells from cranial bone at craniotomy--a preliminary study. J Neurooncol. 2003; 64:265–270. PMID: 14558603.
22. Jiang W, Gu W, Brännström T, Rosqvist R, Wester P. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke. 2001; 32:1201–1207. PMID: 11340234.
Article
23. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci. 2003; 24:171–189. PMID: 14550778.
Article
24. Kamata I, Terai Y, Ohmoto T. Attempt to establish an experimental animal model of moyamoya disease using immuno-embolic material--histological changes of the arterial wall resulting from immunological reaction in cats. Acta Med Okayama. 2003; 57:143–150. PMID: 12908012.
25. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction : the MAGIC cell randomised clinical trial. Lancet. 2004; 363:751–756. PMID: 15016484.
Article
26. Kapu R, Symss NP, Cugati G, Pande A, Vasudevan CM, Ramamurthi R. Multiple burr hole surgery as a treatment modality for pediatric moyamoya disease. J Pediatr Neurosci. 2010; 5:115–120. PMID: 21559155.
Article
27. Kawaguchi S, Okuno S, Sakaki T. Effect of direct arterial bypass on the prevention of future stroke in patients with the hemorrhagic variety of moyamoya disease. J Neurosurg. 2000; 93:397–401. PMID: 10969936.
Article
28. Kawaguchi T, Fujita S, Hosoda K, Shibata Y, Komatsu H, Tamaki N. [Usefulness of multiple burr-hole operation for child Moyamoya disease]. No Shinkei Geka. 1998; 26:217–224. PMID: 9558653.
29. Kawaguchi T, Fujita S, Hosoda K, Shose Y, Hamano S, Iwakura M, et al. Multiple burr-hole operation for adult moyamoya disease. J Neurosurg. 1996; 84:468–476. PMID: 8609560.
Article
30. Kawamoto H, Inagawa T, Ikawa F, Sakoda E. A modified burr-hole method in galeoduroencephalosynangiosis for an adult patient with probable moyamoya disease--case report and review of the literature. Neurosurg Rev. 2001; 24:147–150. PMID: 11485238.
Article
31. Kawamoto H, Kiya K, Mizoue T, Ohbayashi N. A modified burr-hole method 'galeoduroencephalosynangiosis' in a young child with moyamoya disease. A preliminary report and surgical technique. Pediatr Neurosurg. 2000; 32:272–275. PMID: 10965275.
Article
32. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997; 386:493–495. PMID: 9087407.
Article
33. Khan N, Schuknecht B, Boltshauser E, Capone A, Buck A, Imhof HG, et al. Moyamoya disease and Moyamoya syndrome : experience in Europe; choice of revascularisation procedures. Acta Neurochir (Wien). 2003; 145:1061–1071. discussion 1071PMID: 14663563.
Article
34. Kim DI, Kim MJ, Joh JH, Shin SW, Do YS, Moon JY, et al. Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger's disease. Stem Cells. 2006; 24:1194–1200. PMID: 16439614.
Article
35. Kim HS, Lee HJ, Yeu IS, Yi JS, Yang JH, Lee IW. The neovascularization effect of bone marrow stromal cells in temporal muscle after encephalomyosynangiosis in chronic cerebral ischemic rats. J Korean Neurosurg Soc. 2008; 44:249–255. PMID: 19096686.
Article
36. Kirana S, Stratmann B, Lammers D, Negrean M, Stirban A, Minartz P, et al. Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract. 2007; 61:690–692. PMID: 17394441.
Article
37. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat : age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996; 16:2027–2033. PMID: 8604047.
Article
38. Kusaka N, Sugiu K, Tokunaga K, Katsumata A, Nishida A, Namba K, et al. Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. J Neurosurg. 2005; 103:882–890. PMID: 16304993.
Article
39. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998; 18:7768–7778. PMID: 9742147.
Article
40. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20:84–91. PMID: 2643202.
Article
41. Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol. 2005; 20:665–671. PMID: 15736068.
42. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005; 28:223–250. PMID: 16022595.
Article
43. Newell DW, Vilela MD. Superficial temporal artery to middle cerebral artery bypass. Neurosurgery. 2004; 54:1441–1448. discussion 1448-1449PMID: 15157302.
Article
44. Ohira K. Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci. 2011; 68:1645–1656. PMID: 21042833.
Article
45. Oliveira RS, Amato MC, Simão GN, Abud DG, Avidago EB, Specian CM, et al. Effect of multiple cranial burr hole surgery on prevention of recurrent ischemic attacks in children with moyamoya disease. Neuropediatrics. 2009; 40:260–264. PMID: 20446218.
Article
46. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997; 17:3727–3738. PMID: 9133393.
Article
47. Renault MA, Losordo DW. Therapeutic myocardial angiogenesis. Microvasc Res. 2007; 74:159–171. PMID: 17950369.
Article
48. Ross IB, Shevell MI, Montes JL, Rosenblatt B, Watters GV, Farmer JP, et al. Encephaloduroarteriosynangiosis (EDAS) for the treatment of childhood moyamoya disease. Pediatr Neurol. 1994; 10:199–204. PMID: 8060421.
Article
49. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992; 359:843–845. PMID: 1279431.
Article
50. Suzuki M, Iso-o N, Takeshita S, Tsukamoto K, Mori I, Sato T, et al. Facilitated angiogenesis induced by heme oxygenase-1 gene transfer in a rat model of hindlimb ischemia. Biochem Biophys Res Commun. 2003; 302:138–143. PMID: 12593860.
Article
51. Takahashi A, Kamiyama H, Houkin K, Abe H. Surgical treatment of childhood moyamoya disease--comparison of reconstructive surgery centered on the frontal region and the parietal region. Neurol Med Chir (Tokyo). 1995; 35:231–237. PMID: 7596466.
52. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis : paradigms, pitfalls, limitations, and validation. Brain Res Rev. 2007; 53:198–214. PMID: 17020783.
Article
53. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999; 2:266–270. PMID: 10195220.
Article
54. Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY. VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res. 2007; 85:73–82. PMID: 17061257.
Article
55. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000; 61:364–370. PMID: 10931522.
Article
56. Yanagawa Y, Sugiura T, Suzuki K, Okada Y. Moyamoya disease associated with positive findings for rheumatoid factor and myeloperoxidase-anti-neutrophil cytoplasmic antibody. West Indian Med J. 2007; 56:282–284. PMID: 18072414.
Article
Full Text Links
  • JKNS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr