Tuberc Respir Dis.  2000 Sep;49(3):310-322. 10.4046/trd.2000.49.3.310.

Expression of phospholiapse C isozymes in human lung cancer tissues

Abstract

BACKGROUND
Phospholipase C (PLC) plays an important role in cellular signal transduction and is thought to be critical in cellular growth, differentiation and transformation of certain malignancies. Two second messengers produced from the enzymatic action of PLC are diacylglycerol(DAG) and lnositol 1, 4, 5-trisphosphate(IP3). These two second messengers are important in down stream signal activation of protein kinase C and intracelluar calcium elevation. In addition, functional domains of the PLC isozymes, such as Src homology 2(SH2) domain, Src homology 3(SH3) domain, and pleckstrin homology(PH) domain play crucial roles in protein translocation, lipid membrane modification and intracellular memrane trafficking which occur during various mitogenic processes. We have previously reported the presence of PLC-γ1, γ2, β1, β3, and δ1 isozymes in normal human lung tissue and tyrosine-kinase-independent activation of phospholipase C-γisozymes by tau protein and AHNAK. We had also found that the expression of AHNAK protein was markedly increased in various histologic types of lung cancer tissues as compared to the normal lungs. However, the report concerning expression of various PLC isozymes in lung cancers and other lung diseases is lacking. Therefore, in this study we examined the expression of PLC isozymes in the paired surgical specimens taken from lung cancer patients.
METHODS
Surgically resected lung cancer tissue samples taken from thirty seven patients and their paired normal control lungs from the same patients. The expression of various PLC isozymes were studied. Western bolt analysis of the tissue extracts for the PLC isozymes and immunohistochemistry was performed on typical samples for localization of the isozyme.
RESULTS
In 16 of 18 squamous cell carcinomas, the expression of PLC-γ1 was increased. PLC-γ1 was also found to be increased in all of 15 adenocarcinoma patients. In most of the non-small cell lung cancer tissues we had examined, expression of PLC-δ1 was decreased. However, the expression of PLC-δ1 was markedly increased in 3 adenocarcinomas and 3 squamous carcinomas. Although the numbers were small, in all 4 cases of small cell lung cancer tissues, the expression of PLC-δ1 was nearly absent.
CONCLUSION
We found increased expression of PLC-γ1 isozyme in lung cancer tissues. Results of this study, taken together with our earlier findings of AHNAK protein-a putative PLD-γ, activator-over-expression, and the changes observed in PLC-δ1 in primary human lung cancers may provide a possible insight into the derranged calcium-inositol signaling pathways leading to the lung malignancies.

Keyword

PLC isozymes; PLC-γ1; PLC-δ1; Lung cancer; Carcinogenesis

MeSH Terms

Adenocarcinoma
Calcium
Carcinogenesis
Carcinoma, Non-Small-Cell Lung
Carcinoma, Squamous Cell
Humans*
Immunohistochemistry
Isoenzymes*
Lung Diseases
Lung Neoplasms*
Lung*
Membranes
Phospholipases
Protein Kinase C
Protein Transport
Rivers
Second Messenger Systems
Signal Transduction
Small Cell Lung Carcinoma
tau Proteins
Tissue Extracts
Type C Phospholipases
Calcium
Isoenzymes
Phospholipases
Protein Kinase C
Tissue Extracts
Type C Phospholipases
tau Proteins
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr