1. Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012; 93:965–74.
Article
2. Anhalt JP and Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem. 1975; 47:219–25.
3. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996; 14:1584–6.
Article
4. Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, et al. An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000; 72:1217–23.
Article
5. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, et al. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One [Internet]. 2008; 3:e2843. Available from:. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2475. 672&tool=pmcentrez&rendertype=abstract.
Article
6. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996; 10:1227–32.
Article
7. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001; 20:157–71.
Article
8. Rupf S, Breitung K, Schellenberger W, Merte K, Kneist S, Eschrich K. Differentiation of mutans streptococci by intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Oral Microbiol Immunol. 2005; 20:267–73.
Article
9. Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ. Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods. 2005; 62:273–84.
Article
10. Kumar PM, Vairamani M, RajuPR , Lobo C, Anbumani N, Kumar CP, et al. Rapid discrimination between strains of beta haemolytic streptococci by intact cell mass spectrometry. Indian J Med Res. 2004; 119:283–8.
11. Hettick JM, Kashon ML, Slaven JE, Ma Y, Simpson JP, Siegel PD, et al. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics. 2006; 6:6416–25.
Article
12. Bizzini A, Jaton K, Romo D, Bille J, Prod'hom G, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol. 2011; 49:693–6.
Article
13. Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nocardia species. J Clin Microbiol. 2010; 48:4015–21.
14. Drevinek M, Dresler J, Klimentova J, Pisa L, Hubalek M. Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Lett Appl Microbiol. 2012; 55:40–6.
Article
15. El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One. 2011; 6:e24720.
Article
16. Patel R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis. 2013; 57:564–72.
Article
17. Ferreira L, Castaño SV, Sánchez-Juanes F, González-Cabrero S, Mene-gotto F, Orduña-Domingo A, et al. Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS One. 2010; 5:e14235.
Article
18. Moussaoui W, Jaulhac B, Hoffmann AM, Ludes B, Kostrzewa M, Riegel P, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect. 2010; 16:1631–8.
Article
19. Prod'hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010; 48:1481–3.
20. Stevenson LG, Drake SK, Murray PR. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:444–7.
Article
21. Wolk DM and Dunne WM. New technologies in clinical microbiology. J Clin Microbiol. 2011; 49:s62–7.
Article
22. Klein S, Zimmermann S, Köhler C, Mischnik A, Alle W, Bode KA. Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach. J Med Microbiol. 2012; 61:323–31.
Article
23. Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:2110–5.
Article
24. Ferreira L, Sánchez-Juanes F, Muñoz-Bellido JL, González-Buitrago JM. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin Microbiol Infect. 2011; 17:1007–12.
Article
25. Fiedler GM, Baumann S, Leichtle A, Oltmann A, Kase J, Thiery J, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem. 2007; 53:421–8.
Article
26. Thongboonkerd V, Saetun P. Bacterial overgrowth affects urinary pro-teome analysis: recommendation for centrifugation, temperature, duration, and the use of preservatives during sample collection. J Pro-teome Res. 2007; 6:4173–81.
Article
27. Köhling HL, Bittner A, Müller KD, Buer J, Becker M, Rübben H, et al. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J Med Microbiol. 2012; 61:339–44.
Article
28. Wang XH, Zhang G, Fan YY, Yang X, Sui WJ, Lu XX. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J Microbiol Methods. 2013; 92:231–5.
Article
29. Nyvang Hartmeyer G, Kvistholm Jensen A, Böcher S, Damkjaer Bartels M, Pedersen M, Engell Clausen M, et al. Mass spectrometry: pneumococcal meningitis verified and Brucella species identified in less than half an hour. Scand J Infect Dis. 2010; 42:716–8.
Article
30. La Scola B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn. 2011; 11:287–98.
Article
31. La Scola B and Raoult D. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One. 2009; 4:e8041.
Article
32. Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, et al. Realtime identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:1542–8.
33. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfel-bacher M. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol. 2010; 48:1584–91.
Article
34. Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K. Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol. 2007; 45:2392–7.
Article
35. Szabados F, Michels M, Kaase M, Gatermann S. The sensitivity of direct identification from positive BacT/ALERT ™(bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect. 2011; 17:192–5.
Article
36. Vlek AL, Bonten MJ, Boel CH. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One. 2012; 7:e32859.
Article
37. Chen JH, Ho PL, Kwan GS, She KK, Siu GK, Cheng VC, et al. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol. 2013; 51:1733–9.
Article
38. Marinach-Patrice C, Fekkar A, Atanasova R, Gomes J, Djamdjian L, Brossas JY, et al. Rapid species diagnosis for invasive candidiasis using mass spectrometry PLoS One. 2010; 5:e8862.
39. Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, Ruggeri A, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012; 50:176–9.
Article
40. La Scola B, Fournier PE, Raoult D. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe. 2011; 17:106–12.
Article
41. Munoz R, López-López A, Urdiain M, Moore ER, Rosselló-Móra R. Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Syst Appl Microbiol. 2011; 34:69–75.
Article
42. Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst Appl Microbiol. 1985; 6:183–95.
Article
43. Welker M and Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol. 2011; 34:2–11.
44. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002; 296:2225–9.
Article
45. Sauer S, Reinhardt R, Lehrach H, Gut IG. Single-nucleotide polymorphisms: analysis by mass spectrometry. Nat Protoc. 2006; 1:1761–71.
Article
46. Stuyver L, Van Geyt C, De Gendt S, Van Reybroeck G, Zoulim F, Leroux-Roels G, et al. Line probe assay for monitoring drug resistance in hepatitis B virus-infected patients during antiviral therapy. J Clin Microbiol. 2000; 38:702–7.
Article
47. Stuyver L, Wyseur A, Van Arnhem W, Hernandez F, Maertens G. Sec-ond-generation line probe assay for hepatitis C virus genotyping. J Clin Microbiol. 1996; 34:2259–66.
Article
48. Kim HS, Han KH, Ahn SH, Kim EO, Chang HY, Moon MS, et al. Evaluation of methods for monitoring drug resistance in chronic hepatitis B patients during lamivudine therapy based on mass spectrometry and reverse hybridization. Antivir Ther. 2005; 10:441–9.
49. Hong SP, Kim NK, Hwang SG, Chung HJ, Kim S, Han JH, et al. Detection of hepatitis B virus YMDD variants using mass spectrometric analysis of oligonucleotide fragments. J Hepatol. 2004; 40:837–44.
50. Kim YJ, Kim SO, Chung HJ, Jee MS, Kim BG, Kim KM, et al. Population genotyping of hepatitis C virus by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of short DNA fragments. Clin Chem. 2005; 51:1123–31.
Article