Lab Med Online.  2015 Oct;5(4):176-187. 10.3343/lmo.2015.5.4.176.

MALDI-TOF MS: Its Application in the Clinical Laboratory and a Paradigm Shift in Clinical Microbiology

Affiliations
  • 1Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. m91w95pf@snu.ac.kr
  • 2Departmentof Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
  • 3Departmentof Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.

Abstract

In the past decade, clinical microbiology underwent revolutionary changes in methods used to identify microorganisms, a transition from slow and traditional microbial identification algorithms to rapid molecular methods and mass spectrometry (MS). Earlier, MS was clinically used as a highly complex method that was adapted for protein-centered analysis of samples in chemistry laboratories. Recently, a paradigm-shift happened when matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS was implemented to be used in microbiology laboratories for rapid and robust methods for accurate microbial identification. Two instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases even genetic sequence-based identification practices. This review summarizes the current role of MALDI-TOF MS in clinical research, in diagnostic clinical microbiology laboratories, and serves as an introduction to MALDI-TOF MS, highlighting research associated with sample preparation, algorithms, interpretations, and limitations. Currently available MALDI-TOF MS instruments as well as software platforms that support the use of MALDI-TOF with direct specimens have been discussed in this review. Finally, clinical laboratories are consistently striving to extend the potential of these new methods, often in partnership with developmental scientists, resulting in novel technologies, such as MALDI-TOF MS, which could shape and define the diagnostic landscape for years to come.


MeSH Terms

Chemistry
Mass Spectrometry

Figure

  • Fig. 1. Algorithms and result sheets of two commercially available MALDI-TOF analysis platforms.


Cited by  1 articles

Changing Guidelines for Clinical Microbiology Laboratories and Their Influences on Workflows Related to Consultations
Sunyoung Ahn, Hyunsoo Kim, Ji Yeon Sung, Myung Sook Kim, Dongeun Yong, Kyungwon Lee
Lab Med Online. 2016;6(4):228-232.    doi: 10.3343/lmo.2016.6.4.228.


Reference

References

1. Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012; 93:965–74.
Article
2. Anhalt JP and Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem. 1975; 47:219–25.
3. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996; 14:1584–6.
Article
4. Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, et al. An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000; 72:1217–23.
Article
5. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, et al. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One [Internet]. 2008; 3:e2843. Available from:. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2475. 672&tool=pmcentrez&rendertype=abstract.
Article
6. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996; 10:1227–32.
Article
7. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001; 20:157–71.
Article
8. Rupf S, Breitung K, Schellenberger W, Merte K, Kneist S, Eschrich K. Differentiation of mutans streptococci by intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Oral Microbiol Immunol. 2005; 20:267–73.
Article
9. Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ. Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods. 2005; 62:273–84.
Article
10. Kumar PM, Vairamani M, RajuPR , Lobo C, Anbumani N, Kumar CP, et al. Rapid discrimination between strains of beta haemolytic streptococci by intact cell mass spectrometry. Indian J Med Res. 2004; 119:283–8.
11. Hettick JM, Kashon ML, Slaven JE, Ma Y, Simpson JP, Siegel PD, et al. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics. 2006; 6:6416–25.
Article
12. Bizzini A, Jaton K, Romo D, Bille J, Prod'hom G, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol. 2011; 49:693–6.
Article
13. Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nocardia species. J Clin Microbiol. 2010; 48:4015–21.
14. Drevinek M, Dresler J, Klimentova J, Pisa L, Hubalek M. Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Lett Appl Microbiol. 2012; 55:40–6.
Article
15. El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One. 2011; 6:e24720.
Article
16. Patel R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis. 2013; 57:564–72.
Article
17. Ferreira L, Castaño SV, Sánchez-Juanes F, González-Cabrero S, Mene-gotto F, Orduña-Domingo A, et al. Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS One. 2010; 5:e14235.
Article
18. Moussaoui W, Jaulhac B, Hoffmann AM, Ludes B, Kostrzewa M, Riegel P, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect. 2010; 16:1631–8.
Article
19. Prod'hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010; 48:1481–3.
20. Stevenson LG, Drake SK, Murray PR. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:444–7.
Article
21. Wolk DM and Dunne WM. New technologies in clinical microbiology. J Clin Microbiol. 2011; 49:s62–7.
Article
22. Klein S, Zimmermann S, Köhler C, Mischnik A, Alle W, Bode KA. Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach. J Med Microbiol. 2012; 61:323–31.
Article
23. Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:2110–5.
Article
24. Ferreira L, Sánchez-Juanes F, Muñoz-Bellido JL, González-Buitrago JM. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin Microbiol Infect. 2011; 17:1007–12.
Article
25. Fiedler GM, Baumann S, Leichtle A, Oltmann A, Kase J, Thiery J, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem. 2007; 53:421–8.
Article
26. Thongboonkerd V, Saetun P. Bacterial overgrowth affects urinary pro-teome analysis: recommendation for centrifugation, temperature, duration, and the use of preservatives during sample collection. J Pro-teome Res. 2007; 6:4173–81.
Article
27. Köhling HL, Bittner A, Müller KD, Buer J, Becker M, Rübben H, et al. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J Med Microbiol. 2012; 61:339–44.
Article
28. Wang XH, Zhang G, Fan YY, Yang X, Sui WJ, Lu XX. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J Microbiol Methods. 2013; 92:231–5.
Article
29. Nyvang Hartmeyer G, Kvistholm Jensen A, Böcher S, Damkjaer Bartels M, Pedersen M, Engell Clausen M, et al. Mass spectrometry: pneumococcal meningitis verified and Brucella species identified in less than half an hour. Scand J Infect Dis. 2010; 42:716–8.
Article
30. La Scola B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn. 2011; 11:287–98.
Article
31. La Scola B and Raoult D. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One. 2009; 4:e8041.
Article
32. Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, et al. Realtime identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:1542–8.
33. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfel-bacher M. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol. 2010; 48:1584–91.
Article
34. Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K. Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol. 2007; 45:2392–7.
Article
35. Szabados F, Michels M, Kaase M, Gatermann S. The sensitivity of direct identification from positive BacT/ALERT ™(bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect. 2011; 17:192–5.
Article
36. Vlek AL, Bonten MJ, Boel CH. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One. 2012; 7:e32859.
Article
37. Chen JH, Ho PL, Kwan GS, She KK, Siu GK, Cheng VC, et al. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol. 2013; 51:1733–9.
Article
38. Marinach-Patrice C, Fekkar A, Atanasova R, Gomes J, Djamdjian L, Brossas JY, et al. Rapid species diagnosis for invasive candidiasis using mass spectrometry PLoS One. 2010; 5:e8862.
39. Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, Ruggeri A, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012; 50:176–9.
Article
40. La Scola B, Fournier PE, Raoult D. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe. 2011; 17:106–12.
Article
41. Munoz R, López-López A, Urdiain M, Moore ER, Rosselló-Móra R. Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Syst Appl Microbiol. 2011; 34:69–75.
Article
42. Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst Appl Microbiol. 1985; 6:183–95.
Article
43. Welker M and Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol. 2011; 34:2–11.
44. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002; 296:2225–9.
Article
45. Sauer S, Reinhardt R, Lehrach H, Gut IG. Single-nucleotide polymorphisms: analysis by mass spectrometry. Nat Protoc. 2006; 1:1761–71.
Article
46. Stuyver L, Van Geyt C, De Gendt S, Van Reybroeck G, Zoulim F, Leroux-Roels G, et al. Line probe assay for monitoring drug resistance in hepatitis B virus-infected patients during antiviral therapy. J Clin Microbiol. 2000; 38:702–7.
Article
47. Stuyver L, Wyseur A, Van Arnhem W, Hernandez F, Maertens G. Sec-ond-generation line probe assay for hepatitis C virus genotyping. J Clin Microbiol. 1996; 34:2259–66.
Article
48. Kim HS, Han KH, Ahn SH, Kim EO, Chang HY, Moon MS, et al. Evaluation of methods for monitoring drug resistance in chronic hepatitis B patients during lamivudine therapy based on mass spectrometry and reverse hybridization. Antivir Ther. 2005; 10:441–9.
49. Hong SP, Kim NK, Hwang SG, Chung HJ, Kim S, Han JH, et al. Detection of hepatitis B virus YMDD variants using mass spectrometric analysis of oligonucleotide fragments. J Hepatol. 2004; 40:837–44.
50. Kim YJ, Kim SO, Chung HJ, Jee MS, Kim BG, Kim KM, et al. Population genotyping of hepatitis C virus by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of short DNA fragments. Clin Chem. 2005; 51:1123–31.
Article
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr