1. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971; 105:13–20.
Article
2. Bortner CD, Cidlowski JA. Cellular mechanisms for the re-pression of apoptosis. Annu Rev Pharmacol Toxicol. 2002; 42:259–281.
Article
3. Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 1999; 6:508–515.
Article
4. Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regu-lator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009; 325:332–336.
Article
5. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of non-apoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005; 1:112–119.
Article
6. Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008; 135:1161–1163.
Article
7. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012; 19:107–120.
Article
8. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007; 21:227–233.
Article
9. Linkermann A, Bräsen JH, Himmerkus N, et al. Rip1 (receptor-in-teracting protein kinase 1) mediates necroptosis and contrib-utes to renal ischemia/reperfusion injury. Kidney Int. 2012; 81:751–761.
Article
10. Linkermann A, Bräsen JH, De Zen F, et al. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α- induced shock. Mol Med. 2012; 18:577–586.
11. Wu J, Huang Z, Ren J, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013; 23:994–1006.
Article
12. Günther C, Martini E, Wittkopf N, et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature. 2011; 477:335–339.
Article
13. von Montfort C, Matias N, Fernandez A, et al. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scav-enging in steatohepatitis. J Hepatol. 2012; 57:852–859.
14. Smith CC, Yellon DM. Necroptosis, necrostatins and tissue injury. J Cell Mol Med. 2011; 15:1797–1806.
Article
15. Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014; 370:455–465.
Article
16. Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998; 187:1477–1485.
Article
17. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013; 1833:3448–3459.
Article
18. Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol. 2011; 12:1143–1149.
Article
19. Silke J, Strasser A. The FLIP side of life. Sci Signal. 2013; 6:pe2.
Article
20. Vanlangenakker N, Vanden Berghe T, Bogaert P, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011; 18:656–665.
Article
21. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, cas-pase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000; 1:489–495.
Article
22. Schworer SA, Smirnova II, Kurbatova I, et al. Toll-like receptor-mediated down-regulation of the deubiquitinase cylin-dromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. J Biol Chem. 2014; 289:14422–14433.
Article
23. Khan N, Lawlor KE, Murphy JM, Vince JE. More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Curr Opin Immunol. 2014; 26:76–89.
Article
24. Gerlach B, Cordier SM, Schmukle AC, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011; 471:591–596.
Article
25. Mevissen TE, Hospenthal MK, Geurink PP, et al. OTU deubiquiti-nases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 2013; 154:169–184.
Article
26. Oberst A, Green DR. It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol. 2011; 12:757–763.
Article
27. Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the cas-pase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011; 471:363–367.
Article
28. Zhao J, Jitkaew S, Cai Z, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A. 2012; 109:5322–5327.
Article
29. Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012; 148:213–227.
Article
30. Dillon CP, Oberst A, Weinlich R, et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 2012; 1:401–407.
Article
31. Welz PS, Wullaert A, Vlantis K, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature. 2011; 477:330–334.
Article
32. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the re-lease of damage-associated molecular patterns and its physio-logical relevance. Immunity. 2013; 38:209–223.
Article
33. Kaiser WJ, Upton JW, Long AB, et al. RIP3 mediates the embry-onic lethality of caspase-8-deficient mice. Nature. 2011; 471:368–372.
Article
34. Kaiser WJ, Upton JW, Mocarski ES. Viral modulation of programmed necrosis. Curr Opin Virol. 2013; 3:296–306.
Article
35. Thapa RJ, Nogusa S, Chen P, et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A. 2013; 110:E3109–E3118.
Article
36. Li S, Zhang L, Yao Q, et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature. 2013; 501:242–246.
Article
37. He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009; 137:1100–1111.
38. Shirinzadeh H, Eren B, Gurer-Orhan H, Suzen S, Ozden S. Novel indole-based analogs of melatonin: synthesis and in vitro anti-oxidant activity studies. Molecules. 2010; 15:2187–2202.
Article
39. Kim HJ, Koo SY, Ahn BH, et al. NecroX as a novel class of mitochondrial reactive oxygen species and ONOO− scavenger. Arch Pharm Res. 2010; 33:1813–1823.
40. Choi JM, Park KM, Kim SH, et al. Effect of necrosis modulator necrox-7 on hepatic ischemia-reperfusion injury in beagle dogs. Transplant Proc. 2010; 42:3414–3421.
Article
41. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013; 144:1199–1209.e4.
Article
42. Mareninova OA, Hermann K, French SW, et al. Impaired auto-phagic flux mediates acinar cell vacuole formation and trypsi-nogen activation in rodent models of acute pancreatitis. J Clin Invest. 2009; 119:3340–3355.
Article
43. Moscat J, Diaz-Meco MT. p62: a versatile multitasker takes on cancer. Trends Biochem Sci. 2012; 37:230–236.
Article
44. Farkas T, Daugaard M, Jäättelä M. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy. J Biol Chem. 2011; 286:38904–38912.
Article
45. Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014; 147:765–783.e4.
Article
46. Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phos-phorylation by RIP3. Mol Cell. 2014; 54:133–146.
Article
47. Luedde M, Lutz M, Carter N, et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after my-ocardial infarction. Cardiovasc Res. 2014; 103:206–216.
Article
48. Vucur M, Reisinger F, Gautheron J, et al. RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by con-trolling caspase-8- and JNK-dependent compensatory cell proliferation. Cell Rep. 2013; 4:776–790.
Article
49. Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX, Jaeschke H. Receptor interacting protein kinase 3 is a critical early media-tor of acetaminophen-induced hepatocyte necrosis in mice. Hepatology. 2013; 58:2099–2108.
Article
50. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. Absence of receptor interacting protein kinase 3 prevents etha-nol-induced liver injury. Hepatology. 2013; 57:1773–1783.
Article
51. Sharma M, Gadang V, Jaeschke A. Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol. 2012; 82:1001–1007.
Article