Korean J Physiol Pharmacol.  2015 May;19(3):283-289. 10.4196/kjpp.2015.19.3.283.

Improvement Characteristics of Bio-active Materials Coated Fabric on Rat Muscular Mitochondria

Affiliations
  • 1Department of Physiology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea. akdongyi01@cau.ac.kr
  • 2Department of Family Medicine, College of Medicine, Chung-Ang University, Seoul 156-756, Korea.
  • 3Research and Development Center, VENTEX Co. Ltd., Seoul 138-220, Korea.

Abstract

This study surveys the improvement characteristics in old-aged muscular mitochondria by bio-active materials coated fabric (BMCF). To observe the effects, the fabric (10 and 30%) was worn to old-aged rat then the oxygen consumption efficiency and copy numbers of mitochondria, and mRNA expression of apoptosis- and mitophagy-related genes were verified. By wearing the BMCF, the oxidative respiration significantly increased when using the 30% materials coated fabric. The mitochondrial DNA copy number significantly decreased and subsequently recovered in a dose-dependent manner. The respiratory control ratio to mitochondrial DNA copy number showed a dose-dependent increment. As times passed, Bax, caspase 9, PGC-1alpha and beta-actin increased, and Bcl-2 decreased in a dose-dependent manner. However, the BMCF can be seen to have had no effect on Fas receptor. PINK1 expression did not change considerably and was inclined to decrease in control group, but the expression was down-regulated then subsequently increased with the use of the BMCF in a dose-dependent manner. Caspase 3 increased and subsequently decreased in a dose-dependent manner. These results suggest that the BMCF invigorates mitophagy and improves mitochondrial oxidative respiration in skeletal muscle, and in early stage of apoptosis induced by the BMCF is not related to extrinsic death-receptor mediated but mitochondria-mediated signaling pathway.

Keyword

Apoptosis; Bio-active materials coated fabric; Mitochondria; Mitophagy; Oxidative respiration

MeSH Terms

Actins
Animals
Antigens, CD95
Apoptosis
Caspase 3
Caspase 9
DNA, Mitochondrial
Mitochondria*
Mitochondrial Degradation
Muscle, Skeletal
Oxygen Consumption
Rats*
Respiration
RNA, Messenger
Actins
Antigens, CD95
Caspase 3
Caspase 9
DNA, Mitochondrial
RNA, Messenger

Figure

  • Fig. 1 Effect of BMCF on the expression of oxygen consumption. V-Con, 0% BMCF group; V-10, 10% BMCF group; V-30, 30% BMCF group. **p<0.01, ***p<0.001.

  • Fig. 2 Effect of BMCF on the expression of mitochondrial DNA copy number. V-Con, 0% BMCF group; V-10, 10% BMCF group; V-30, 30% BMCF group. *p<0.05, **p<0.01.

  • Fig. 3 Effect of BMCF on the expression of oxygen consumption to mitochondrial DNA copy number through 4 weeks. V-Con, 0% BMCF group (n=26); V-10, 10% BMCF (n=19); V-30, 30% BMCF group (n=27). ***p<0.001.

  • Fig. 4 PCR amplification of the cDNA with B-cell lymphoma 2 gene (Bcl-2), Bcl-2-associated X protein (Bax), PTEN-induced putative kinase 1 (PINK1), Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), beta-actin (β-actin) and 18S ribosomal RNA (18S) from rat subtrapezial muscle.

  • Fig. 5 Effect of BMCF on the mRNA expressions of caspase 9 (CASP9), caspase 3 (CASP3), Bcl-2-associated X protein (Bax), B-cell lymphoma 2 gene (Bcl-2), Fas receptor (FasR) and beta-actin (β-actin). (A) CASP9, (B) CASP3, (C) Bax, (D) Bcl-2, (E) FasR, (F) β-actin. *p<0.05, **p<0.01, ***p<0.001.


Cited by  3 articles

Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling
Donghee Lee, Yelim Seo, Young-Won Kim, Seongtae Kim, Hyemi Bae, Jeongyoon Choi, Inja Lim, Hyoweon Bang, Jung-Ha Kim, Jae-Hong Ko
Korean J Physiol Pharmacol. 2019;23(2):141-150.    doi: 10.4196/kjpp.2019.23.2.141.

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells
Yelim Seo, Young-Won Kim, Donghee Lee, Donghyeon Kim, Kyoungseo Kim, Taewoo Kim, Changyeob Baek, Yerim Lee, Junhyeok Lee, Hosung Lee, Geonwoo Jang, Wonyeong Jeong, Junho Choi, Doegeun Hwang, Jung Soo Suh, Sun-Woo Kim, Hyoung Kyu Kim, Jin Han, Hyoweon Bang, Jung-Ha Kim, Tong Zhou, Jae-Hong Ko
Korean J Physiol Pharmacol. 2021;25(2):167-175.    doi: 10.4196/kjpp.2021.25.2.167.

Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart
Jehee Jang, Ki-Woon Kang, Young-Won Kim, Seohyun Jeong, Jaeyoon Park, Jihoon Park, Jisung Moon, Junghyun Jang, Seohyeon Kim, Sunghun Kim, Sungjoo Cho, Yurim Lee, Hyoung Kyu Kim, Jin Han, Eun-A Ko, Sung-Cherl Jung, Jung-Ha Kim, Jae-Hong Ko
Korean J Physiol Pharmacol. 2024;28(3):209-217.    doi: 10.4196/kjpp.2024.28.3.209.


Reference

1. Ibrahim NA, Eid BM, Khalil HM. Cellulosic/wool pigment prints with remarkable antibacterial functionalities. Carbohydr Polym. 2015; 115:559–567. PMID: 25439932.
Article
2. Fluhr JW, Breternitz M, Kowatzki D, Bauer A, Bossert J, Elsner P, Hipler UC. Silver-loaded seaweed-based cellulosic fiber improves epidermal skin physiology in atopic dermatitis: safety assessment, mode of action and controlled, randomized single-blinded exploratory in vivo study. Exp Dermatol. 2010; 19:e9–e15. PMID: 19645851.
Article
3. Koller DY, Halmerbauer G, Böck A, Engstler G. Action of a silk fabric treated with AEGIS in children with atopic dermatitis: a 3-month trial. Pediatr Allergy Immunol. 2007; 18:335–338. PMID: 17346297.
4. Ricci G, Patrizi A, Bendandi B, Menna G, Varotti E, Masi M. Clinical effectiveness of a silk fabric in the treatment of atopic dermatitis. Br J Dermatol. 2004; 150:127–131. PMID: 14746626.
Article
5. Lee MS, Song J, Kim HJ, Park KW, Moon SR. Effect of multi-functional fabric on sleep stages and growth hormone levels during sleep. Int J Neurosci. 2004; 114:795–804. PMID: 15204045.
Article
6. Lee MS, Kim HJ, Song J, Park KW, Moon SR. Effects of multifunctional fabrics on cardiac autonomic tone and psychological state. Int J Neurosci. 2004; 114:923–931. PMID: 15527199.
7. Herbst A, Johnson CJ, Hynes K, McKenzie D, Aiken JM. Mitochondrial biogenesis drives a vicious cycle of metabolic insufficiency and mitochondrial DNA deletion mutation accumulation in aged rat skeletal muscle fibers. PLoS One. 2013; 8:e59006. PMID: 23516592.
Article
8. Wagatsuma A, Kotake N, Yamada S. Muscle regeneration occurs to coincide with mitochondrial biogenesis. Mol Cell Biochem. 2011; 349:139–147. PMID: 21110070.
Article
9. Remels AH, Langen RC, Schrauwen P, Schaart G, Schols AM, Gosker HR. Regulation of mitochondrial biogenesis during myogenesis. Mol Cell Endocrinol. 2010; 315:113–120. PMID: 19804813.
Article
10. Duguez S, Féasson L, Denis C, Freyssenet D. Mitochondrial biogenesis during skeletal muscle regeneration. Am J Physiol Endocrinol Metab. 2002; 282:E802–E809. PMID: 11882500.
11. Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, Wrutniak C, Cabello G. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem. 2000; 275:2733–2744. PMID: 10644737.
Article
12. Barbieri E, Battistelli M, Casadei L, Vallorani L, Piccoli G, Guescini M, Gioacchini AM, Polidori E, Zeppa S, Ceccaroli P, Stocchi L, Stocchi V, Falcieri E. Morphofunctional and biochemical approaches for studying mitochondrial changes during myoblasts differentiation. J Aging Res. 2011; 2011:845379. PMID: 21629710.
Article
13. Seyer P, Grandemange S, Rochard P, Busson M, Pessemesse L, Casas F, Cabello G, Wrutniak-Cabello C. P43-dependent mitochondrial activity regulates myoblast differentiation and slow myosin isoform expression by control of Calcineurin expression. Exp Cell Res. 2011; 317:2059–2071. PMID: 21664352.
Article
14. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006; 16:R551–R560. PMID: 16860735.
Article
15. McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease--its impact, etiology, and pathology. Curr Top Dev Biol. 2007; 77:113–155. PMID: 17222702.
Article
16. Giorgi C, Wieckowski MR, Pandolfi PP, Pinton P. Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Commun Integr Biol. 2011; 4:334–335. PMID: 21980573.
Article
17. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999; 341:233–249. PMID: 10393078.
Article
18. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010; 40:280–293. PMID: 20965422.
Article
19. Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010; 12:842–846. PMID: 20811357.
Article
20. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal. 2010; 12:503–535. PMID: 19650712.
Article
21. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006; 209:2265–2275. PMID: 16731803.
Article
22. Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009; 71:177–203. PMID: 19575678.
Article
23. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007; 462:245–253. PMID: 17475204.
Article
24. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007; 2:287–295. PMID: 17406588.
25. Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion. 2009; 9:261–265. PMID: 19324101.
Article
26. Korohoda W, Pietrzkowski Z, Reiss K. Chloramphenicol, an inhibitor of mitochondrial protein synthesis, inhibits myoblast fusion and myotube differentiation. Folia Histochem Cytobiol. 1993; 31:9–13. PMID: 8500631.
27. Herzberg NH, Middelkoop E, Adorf M, Dekker HL, Van Galen MJ, Van den Berg M, Bolhuis PA, Van den Bogert C. Mitochondria in cultured human muscle cells depleted of mitochondrial DNA. Eur J Cell Biol. 1993; 61:400–408. PMID: 8223726.
28. Hamai N, Nakamura M, Asano A. Inhibition of mitochondrial protein synthesis impaired C2C12 myoblast differentiation. Cell Struct Funct. 1997; 22:421–431. PMID: 9368716.
Article
29. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994; 124:1–6. PMID: 8294493.
Article
30. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood. 2000; 96:3932–3938. PMID: 11090080.
Article
31. Zhang XD, Wang Y, Wu JC, Lin F, Han R, Han F, Fukunaga K, Qin ZH. Down-regulation of Bcl-2 enhances autophagy activation and cell death induced by mitochondrial dysfunction in rat striatum. J Neurosci Res. 2009; 87:3600–3610. PMID: 19565656.
Article
32. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006; 27:728–735. PMID: 17018837.
33. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004; 18:357–368. PMID: 15004004.
Article
34. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999; 98:115–124. PMID: 10412986.
Article
35. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012; 125:795–799. PMID: 22448035.
Article
36. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010; 189:211–221. PMID: 20404107.
Article
37. Clarke P, Tyler KL. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol. 2009; 7:144–155. PMID: 19148180.
Article
38. Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci. 2008; 9:344–356. PMID: 18425089.
Article
39. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998; 1366:177–196. PMID: 9714796.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr