J Korean Med Sci.  2011 Oct;26(10):1356-1363. 10.3346/jkms.2011.26.10.1356.

No Association of Functional Polymorphisms in Methlylenetetrahydrofolate Reductase and the Risk and Minor Physical Anomalies of Schizophrenia in Korean Population

Affiliations
  • 1Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Korea. rmsmind@snu.ac.kr
  • 2Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, Korea.
  • 3Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Daejeon, Korea.
  • 4Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea.
  • 5Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Korea.
  • 6Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.
  • 7Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.

Abstract

Methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate metabolism, plays an important role in DNA methylation. It has been suggested that abnormal DNA methylation contributes to the pathogenesis of schizophrenia and congenital anomalies. The previous findings regarding the genetic relationship between MTHFR and schizophrenia are controversial. This study investigated the association of the two functional polymorphisms of MTHFR, C677T and A1298C, with the risk for schizophrenia. Furthermore, we conducted an updated meta-analysis on the two polymorphisms. In addition, we investigated the relationship between the polymorphisms and minor physical anomaly (MPA), which may represent neurodevelopmental aberrations in 201 schizophrenia patients and 350 normal control subjects. There was no significant association between either of the two polymorphisms and the risk of schizophrenia (chi-square = 0.001, df = 1, P = 0.971 for C677T; chi-square = 1.319, df = 1, P = 0.251 for A1298C). However, in meta-analysis, the C677T polymorphism showed a significant association in the combined and Asian populations (OR = 1.13, P = 0.005; OR = 1.21, P = 0.011, respectively) but not in the Korean and Caucasian populations alone. Neither polymorphism was associated with MPAs measured by the Waldrop scale (chi-square = 2.513, df = 2, P = 0.285). In conclusion, the present findings suggest that in the Korean population, the MTHFR polymorphisms are unlikely to be associated with the risk for schizophrenia and neurodevelopmental abnormalities related to schizophrenia.

Keyword

Case-Control Studies; Polymorphism, Genetic; Korean; Meta-Analysis; Methylenetetrahydrofolate Reductase; Schizophrenia

MeSH Terms

Adult
Alleles
Case-Control Studies
Congenital Abnormalities/*genetics
DNA Methylation
Female
Gene Frequency
Genetic Association Studies
Genetic Predisposition to Disease
Genotype
Humans
Male
Methylenetetrahydrofolate Reductase (NADPH2)/*genetics
Middle Aged
*Polymorphism, Single Nucleotide
Republic of Korea
Schizophrenia/*genetics/pathology

Reference

1. Zintzaras E. C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet. 2006. 16:105–115.
2. Abdolmaleky HM, Smith CL, Faraone SV, Shafa R, Stone W, Glatt SJ, Tsuang MT. Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. Am J Med Genet B Neuropsychiatr Genet. 2004. 127B:51–59.
3. Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000. 69:228–232.
4. Shaw GM, Lammer EJ, Wasserman CR, O'Malley CD, Tolarova MM. Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet. 1995. 346:393–396.
5. Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, Barcellos LF, Lammer EJ, Finnell RH. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet. 2009. 10:49.
6. Botto LD, Yang Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol. 2000. 151:862–877.
7. Lawrie SM, Byrne M, Miller P, Hodges A, Clafferty RA, Cunningham Owens DG, Johnstone EC. Neurodevelopmental indices and the development of psychotic symptoms in subjects at high risk of schizophrenia. Br J Psychiatry. 2001. 178:524–530.
8. Compton MT, Walker EF. Physical manifestations of neurodevelopmental disruption: are minor physical anomalies part of the syndrome of schizophrenia? Schizophr Bull. 2009. 35:425–436.
9. Joo EJ, Jeong SH, Ahn YM, Lee KY, Chang Yoon S, Kim EJ, Kim SU, Cho SC, Sik Kim Y. No association found between 158 Val/Met polymorphism of the COMT gene and schizophrenia with minor physical anomalies. Psychiatry Res. 2005. 136:83–91.
10. van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998. 62:1044–1051.
11. Arinami T, Yamada N, Yamakawa-Kobayashi K, Hamaguchi H, Toru M. Methylenetetrahydrofolate reductase variant and schizophrenia/depression. Am J Med Genet. 1997. 74:526–528.
12. Feng LG, Song ZW, Xin F, Hu J. Association of plasma homocysteine and methylenetetrahydrofolate reductase C677T gene variant with schizophrenia: a Chinese Han population-based case-control study. Psychiatry Res. 2009. 168:205–208.
13. Joober R, Benkelfat C, Lal S, Bloom D, Labelle A, Lalonde P, Turecki G, Rozen R, Rouleau GA. Association between the methylenetetrahydrofolate reductase 677C-->T missense mutation and schizophrenia. Mol Psychiatry. 2000. 5:323–326.
14. Kempisty B, Bober A, Luczak M, Czerski P, Szczepankiewicz A, Hauser J, Jagodziński PP. Distribution of 1298A>C polymorphism of methylenetetrahydrofolate reductase gene in patients with bipolar disorder and schizophrenia. Eur Psychiatry. 2007. 22:39–43.
15. Kempisty B, Mostowska A, Górska I, Łuczak M, Czerski P, Szczepankiewicz A, Hauser J, Jagodziński PP. Association of 677C>T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene with bipolar disorder and schizophrenia. Neurosci Lett. 2006. 400:267–271.
16. Lee YS, Han DH, Jeon CM, Lyoo IK, Na C, Chae SL, Cho SC. Serum homocysteine, folate level and methylenetetrahydrofolate reductase 677, 1298 gene polymorphism in Korean schizophrenic patients. Neuroreport. 2006. 17:743–746.
17. Sazci A, Ergül E, Guzelhan Y, Kaya G, Kara I. Methylenetetrahydrofolate reductase gene polymorphisms in patients with schizophrenia. Brain Res Mol Brain Res. 2003. 117:104–107.
18. Zhang C, Xie B, Du Y, Cheng W, Fang Y, Yu S. Further evidence that methylenetetrahydrofolate reductase A1298C polymorphism is a risk factor for schizophrenia. J Neural Transm. 2010. 117:1115–1117.
19. Jonsson EG, Larsson K, Vares M, Hansen T, Wang AG, Djurovic S, Rønningen KS, Andreassen OA, Agartz I, Werge T, Terenius L, Hall H. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder: an association study. Am J Med Genet B Neuropsychiatr Genet. 2008. 147B:976–982.
20. Kang HJ, Choe BM, Kim SH, Son SR, Lee KM, Kim BG, Hong YS. No Association Between Functional Polymorphisms in COMT and MTHFR and Schizophrenia Risk in Korean Population. Epidemiol Health. 2010. 32:e2010011.
21. Kunugi H, Fukuda R, Hattori M, Kato T, Tatsumi M, Sakai T, Hirose T, Nanko S. C677T polymorphism in methylenetetrahydrofolate reductase gene and psychoses. Mol Psychiatry. 1998. 3:435–437.
22. Muntjewerff JW, Ophoff RA, Buizer-Voskamp JE, Strengman E, den Heijer M. GROUP Consortium. Effects of season of birth and a common MTHFR gene variant on the risk of schizophrenia. Eur Neuropsychopharmacol. 2011. 21:300–305.
23. Philibert R, Gunter T, Hollenbeck N, Adams WJ, Bohle P, Packer H, Sandhu H. No association of the C677T methylenetetrahydrofolate reductase polymorphism with schizophrenia. Psychiatr Genet. 2006. 16:221–223.
24. Tan EC, Chong SA, Lim LC, Chan AO, Teo YY, Tan CH, Mahendran R. Genetic analysis of the thermolabile methylenetetrahydrofolate reductase variant in schizophrenia and mood disorders. Psychiatr Genet. 2004. 14:227–231.
25. Vilella E, Virgos C, Murphy M, Martorell L, Valero J, Simø JM, Joven J, Fernández-Ballart J, Labad A. Further evidence that hyperhomocysteinemia and methylenetetrahydrofolate reductase C677T and A1289C polymorphisms are not risk factors for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2005. 29:1169–1174.
26. Virgos C, Martorell L, Simø JM, Valero J, Figuera L, Joven J, Labad A, Vilella E. Plasma homocysteine and the methylenetetrahydrofolate reductase C677T gene variant: lack of association with schizophrenia. Neuroreport. 1999. 10:2035–2038.
27. Yu L, Li T, Robertson Z, Dean J, Gu NF, Feng GY, Yates P, Sinclair M, Crombie C, Collier DA, Walker N, He L, St Clair D. No association between polymorphisms of methylenetetrahydrofolate reductase gene and schizophrenia in both Chinese and Scottish populations. Mol Psychiatry. 2004. 9:1063–1065.
28. Shi J, Gershon ES, Liu C. Genetic associations with schizophrenia: metaanalyses of 12 candidate genes. Schizophr Res. 2008. 104:96–107.
29. O'Connor MN, Salles II, Cvejic A, Watkins NA, Walker A, Garner SF, Jones CI, Macaulay IC, Steward M, Zwaginga JJ, Bray SL, Dudbridge F, de Bono B, Goodall AH, Deckmyn H, Stemple DL, Ouwehand WH. Bloodomics Consortium. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood. 2009. 113:4754–4762.
30. Burns P, Gusnanto A, Macaulay IC, Rankin A, Tom B, Langford CF, Dudbridge F, Ouwehand WH, Watkins NA. Bloodomics Consortium. Identification of variation in the platelet transcriptome associated with glycoprotein 6 haplotype. Platelets. 2008. 19:258–267.
31. Guy JD, Majorski LV, Wallace CJ, Guy MP. The incidence of minor physical anomalies in adult male schizophrenics. Schizophr Bull. 1983. 9:571–582.
32. Joo EJ. Development and application of DIGS-K (Diagnostic Interview for Genetic Studies-Korean). Schizophr Clin. 2003. 6:19–23.
33. Joo EJ, Jeong SH, Maeng SJ, Yoon SC, Kim JH, Kim CE, Shin Y, Kim YS. Minor physical anomalies in patients with schizophrenia. J Korean Soc Biol Psychiatry. 2002. 9:140–151.
34. Muntjewerff JW, Hoogendoorn ML, Kahn RS, Sinke RJ, Den Heijer M, Kluijtmans LA, Blom HJ. Hyperhomocysteinemia, methylenetetrahydrofolate reductase 677TT genotype, and the risk for schizophrenia: a Dutch population based case-control study. Am J Med Genet B Neuropsychiatr Genet. 2005. 135B:69–72.
35. Sazci A, Ergul E, Kucukali I, Kara I, Kaya G. Association of the C677T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene with schizophrenia: association is significant in men but not in women. Prog Neuropsychopharmacol Biol Psychiatry. 2005. 29:1113–1123.
36. Betcheva ET, Mushiroda T, Takahashi A, Kubo M, Karachanak SK, Zaharieva IT, Vazharova RV, Dimova II, Milanova VK, Tolev T, Kirov G, Owen MJ, O'Donovan MC, Kamatani N, Nakamura Y, Toncheva DI. Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. J Hum Genet. 2009. 54:98–107.
37. Kavvoura FK, Ioannidis JP. Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet. 2008. 123:1–14.
38. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986. 7:177–188.
39. Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009. 9:80.
40. Peerbooms O, Rutten BP, Decoster J, van Os J, Kenis G, De Hert M, van Winkel R. No association between MTHFR C677T or A1298C and age at onset of schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2010. 153B:1362–1363.
41. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, Rozen R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995. 10:111–113.
42. Jongbloet PH, Verbeek AL, den Heijer M, Roeleveld N. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy. J Exp Clin Assist Reprod. 2008. 5:5.
43. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008. 82:696–711.
44. Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered. 2008. 66:87–98.
45. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001. 10:433–443.
46. Sharp L, Miedzybrodzka Z, Cardy AH, Inglis J, Madrigal L, Barker S, Chesney D, Clark C, Maffulli N. The C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR), maternal use of folic acid supplements, and risk of isolated clubfoot: a case-parent-triad analysis. Am J Epidemiol. 2006. 164:852–861.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr