1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997; 389:816–824. PMID:
9349813.
Article
2. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998; 21:531–543. PMID:
9768840.
Article
3. Oh U, Hwang SW, Kim D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J Neurosci. 1996; 16:1659–1667. PMID:
8774434.
Article
4. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000; 288:306–313. PMID:
10764638.
Article
5. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000; 405:183–187. PMID:
10821274.
Article
6. Shin J, Cho H, Hwang SW, Jung J, Shin CY, Lee SY, Kim SH, Lee MG, Choi YH, Kim J, Haber NA, Reichling DB, Khasar S, Levine JD, Oh U. Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci USA. 2002; 99:10150–10155. PMID:
12097645.
Article
7. Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A
2 and 12-lipoxygenase. J Neurosci. 2007; 27:2331–2337. PMID:
17329430.
8. Lopshire JC, Nicol GD. Activation and recovery of the PGE
2-mediated sensitization of the capsaicin response in rat sensory neurons. J Neurophysiol. 1997; 78:3154–3164. PMID:
9405535.
9. Zhang N, Inan S, Cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci USA. 2005; 102:4536–4541. PMID:
15764707.
Article
10. Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim Biophys Acta. 2007; 1772:989–1003. PMID:
17321113.
Article
11. Vyklický L, Lyfenko A, Susánková K, Teisinger J, Vlachová V. Reducing agent dithiothreitol facilitates activity of the capsaicin receptor VR-1. Neuroscience. 2002; 111:435–441. PMID:
12031340.
Article
12. Jin Y, Kim DK, Khil LY, Oh U, Kim J, Kwak J. Thimerosal decreases TRPV1 activity by oxidation of extracellular sulfhydryl residues. Neurosci Lett. 2004; 369:250–255. PMID:
15464274.
Article
13. Tousova K, Susankova K, Teisinger J, Vyklicky L, Vlachova V. Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology. 2004; 47:273–285. PMID:
15223306.
Article
14. Blaise GA, Gauvin D, Gangal M, Authier S. Nitric oxide, cell signaling and cell death. Toxicology. 2005; 208:177–192. PMID:
15691583.
Article
15. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003; 54:469–487. PMID:
14726604.
16. Lee JJ. Nitric oxide modulation of GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons. Korean J Physiol Pharmacol. 2009; 13:461–467. PMID:
20054493.
Article
17. Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med. 2011; 51:17–29. PMID:
21549190.
Article
18. Ahern GP, Hsu SF, Jackson MB. Direct actions of nitric oxide on rat neurohypophysial K
+ channels. J Physiol. 1999; 520:165–176. PMID:
10517809.
19. Castel H, Vaudry H. Nitric oxide directly activates GABA(A) receptor function through a cGMP/protein kinase-independent pathway in frog pituitary melanotrophs. J Neuroendocrinol. 2001; 13:695–705. PMID:
11489086.
Article
20. Lang RJ, Harvey JR, McPhee GJ, Klemm MF. Nitric oxide and thiol reagent modulation of Ca
2+-activated K
+ (BK
Ca) channels in myocytes of the guinea-pig taenia caeci. J Physiol. 2000; 525:363–376. PMID:
10835040.
21. Renganathan M, Cummins TR, Waxman SG. Nitric oxide blocks fast, slow, and persistent Na
+ channels in C-type DRG neurons by
S-nitrosylation. J Neurophysiol. 2002; 87:761–775. PMID:
11826045.
22. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD. Cyclic GMP-dependent protein kinase activates cloned BK
Ca channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem. 1999; 274:10927–10935. PMID:
10196172.
23. Han J, Kim N, Kim E, Ho WK, Earm YE. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem. 2001; 276:22140–22147. PMID:
11303020.
Article
24. Herring N, Rigg L, Terrar DA, Paterson DJ. NO-cGMP pathway increases the hyperpolarisation-activated current, I
f, and heart rate during adrenergic stimulation. Cardiovasc Res. 2001; 52:446–453. PMID:
11738061.
25. Yoshimura N, Seki S, de Groat WC. Nitric oxide modulates Ca
2+ channels in dorsal root ganglion neurons innervating rat urinary bladder. J Neurophysiol. 2001; 86:304–311. PMID:
11431511.
26. Zhou XB, Ruth P, Schlossmann J, Hofmann F, Korth M. Protein phosphatase 2A is essential for the activation of Ca
2+-activated K
+ currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J Biol Chem. 1996; 271:19760–19767. PMID:
8702682.
27. Zsombok A, Schrofner S, Hermann A, Kerschbaum HH. A cGMP-dependent cascade enhances an L-type-like Ca
2+ current in identified snail neurons. Brain Res. 2005; 1032:70–76. PMID:
15680943.
28. Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A. TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One. 2009; 4:e7596. PMID:
19893614.
Article
29. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. Nitric oxide activates TRP channels by cysteine
S-nitrosylation. Nat Chem Biol. 2006; 2:596–607. PMID:
16998480.
30. Núñez L, Vaquero M, Gómez R, Caballero R, Mateos-Cáceres P, Macaya C, Iriepa I, Gálvez E, López-Farré A, Tamargo J, Delpón E. Nitric oxide blocks hKv1.5 channels by
S-nitrosylation and by a cyclic GMP-dependent mechanism. Cardiovasc Res. 2006; 72:80–89. PMID:
16876149.
31. Almanza A, Navarrete F, Vega R, Soto E. Modulation of voltage-gated Ca
2+ current in vestibular hair cells by nitric oxide. J Neurophysiol. 2007; 97:1188–1195. PMID:
17182910.
32. Irwin C, Roberts W, Naseem KM. Nitric oxide inhibits platelet adhesion to collagen through cGMP-dependent and independent mechanisms: the potential role for
S-nitrosylation. Platelets. 2009; 20:478–486. PMID:
19852686.
33. Jian K, Chen M, Cao X, Zhu XH, Fung ML, Gao TM. Nitric oxide modulation of voltage-gated calcium current by
S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. Biochem Biophys Res Commun. 2007; 359:481–485. PMID:
17544367.
34. Koplas PA, Rosenberg RL, Oxford GS. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci. 1997; 17:3525–3537. PMID:
9133377.
Article
35. Thippeswamy T, McKay JS, Quinn JP, Morris R. Nitric oxide, a biological double-faced janus--is this good or bad? Histol Histopathol. 2006; 21:445–458. PMID:
16437390.
36. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and
S-nitrosothiols. J Gen Physiol. 1996; 108:277–293. PMID:
8894977.
37. Ellershaw DC, Greenwood IA, Large WA. Dual modulation of swelling-activated chloride current by NO and NO donors in rabbit portal vein myocytes. J Physiol. 2000; 528:15–24. PMID:
11018102.
Article
38. White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature. 1993; 361:263–266. PMID:
7678699.
Article
39. Dun NJ, Dun SL, Forstermann U, Tseng LF. Nitric oxide synthase immunoreactivity in rat spinal cord. Neurosci Lett. 1992; 147:217–220. PMID:
1283459.
Article
40. Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt D, Synder SH, Hökfelt T. Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol. 1993; 335:563–575. PMID:
7693774.
Article
41. Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH, Hanley DF. Rat spinal cord neurons contain nitric oxide synthase. Neuroscience. 1994; 59:447–456. PMID:
7516502.
Article
42. Haley JE, Dickenson AH, Schachter M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology. 1992; 31:251–258. PMID:
1630593.
Article
43. Malmberg AB, Yaksh TL. Spinal nitric oxide synthesis inhibition blocks NMDA-induced thermal hyperalgesia and produces antinociception in the formalin test in rats. Pain. 1993; 54:291–300. PMID:
8233543.
Article
44. Przewłocki R, Machelska H, Przewłocka B. Inhibition of nitric oxide synthase enhances morphine antinociception in the rat spinal cord. Life Sci. 1993; 53:PL1–PL5. PMID:
7685846.
Article
45. Hao JX, Xu XJ. Treatment of a chronic allodynia-like response in spinally injured rats: effects of systemically administered nitric oxide synthase inhibitors. Pain. 1996; 66:313–319. PMID:
8880855.
Article
46. Roche AK, Cook M, Wilcox GL, Kajander KC. A nitric oxide synthesis inhibitor (L-NAME) reduces licking behavior and Fos-labeling in the spinal cord of rats during formalin-induced inflammation. Pain. 1996; 66:331–341. PMID:
8880857.
Article
47. Machelska H, Labuz D, Przewłocki R, Przewłocka B. Inhibition of nitric oxide synthase enhances antinociception mediated by mu, delta and kappa opioid receptors in acute and prolonged pain in the rat spinal cord. J Pharmacol Exp Ther. 1997; 282:977–984. PMID:
9262366.
48. Aley KO, McCarter G, Levine JD. Nitric oxide signaling in pain and nociceptor sensitization in the rat. J Neurosci. 1998; 18:7008–7014. PMID:
9712669.
Article
49. Ferreira SH, Duarte ID, Lorenzetti BB. The molecular mechanism of action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide release. Eur J Pharmacol. 1991; 201:121–122. PMID:
1665419.
Article
50. Ferreira SH, Lorenzetti BB, Faccioli LH. Blockade of hyperalgesia and neurogenic oedema by topical application of nitroglycerin. Eur J Pharmacol. 1992; 217:207–209. PMID:
1425939.
Article
51. Harima A, Shimizu H, Takagi H. Analgesic effect of L-arginine in patients with persistent pain. Eur Neuropsychopharmacol. 1991; 1:529–533. PMID:
1822318.
Article
52. Moore PK, Oluyomi AO, Babbedge RC, Wallace P, Hart SL. L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol. 1991; 102:198–202. PMID:
2043923.
Article
53. Kawabata A, Fukuzumi Y, Fukushima Y, Takagi H. Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems. Eur J Pharmacol. 1992; 218:153–158. PMID:
1327824.
Article
54. Lauretti GR, Lima IC, Reis MP, Prado WA, Pereira NL. Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. Anesthesiology. 1999; 90:1528–1533. PMID:
10360847.
Article
55. Durate ID, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol. 1990; 186:289–293. PMID:
1981187.