3. Weng Z, Wang Y, Ouchi T, et al. 2022; Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med. 11:356–371. DOI:
10.1093/stcltm/szac004. PMID:
35485439. PMCID:
PMC9052415.
Article
6. Sharma R. 2022; Emerging interrelationship between the gut microbiome and cellular senescence in the context of aging and disease: perspectives and therapeutic opportunities. Probiotics Antimicrob Proteins. 14:648–663. DOI:
10.1007/s12602-021-09903-3. PMID:
34985682. PMCID:
PMC8728710.
Article
8. Zheng W, Kollmeyer J, Symolon H, et al. 2006; Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Bio-phys Acta. 1758:1864–1884. DOI:
10.1016/j.bbamem.2006.08.009. PMID:
17052686.
Article
11. Wu R, Zhong S, Ni M, et al. 2020; Effects of
Malania oleifera Chun oil on the improvement of learning and memory fun-ction in mice. Evid Based Complement Alternat Med. 2020:8617143. DOI:
10.1155/2020/8617143. PMID:
33014116. PMCID:
PMC7519201.
12. Kwon S, Ki SM, Park SE, et al. 2016; Anti-apoptotic effects of human Wharton's jelly-derived mesenchymal stem cells on skeletal muscle cells mediated via secretion of XCL1. Mol Ther. 24:1550–1560. DOI:
10.1038/mt.2016.125. PMID:
27434589. PMCID:
PMC5113102.
Article
15. Kim JY, Kim DH, Kim DS, et al. 2010; Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-beta42 neurotoxicity
in vitro. FEBS Lett. 584:3601–3608. DOI:
10.1016/j.febslet.2010.07.028. PMID:
20655311.
Article
16. Dominici M, Le Blanc K, Mueller I, et al. 2006; Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. DOI:
10.1080/14653240600855905. PMID:
16923606.
Article
17. Byun HO, Lee YK, Kim JM, Yoon G. 2015; From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 48:549–558. Erratum in: BMB Rep 2016;49:641-650. DOI:
10.5483/BMBRep.2015.48.10.122. PMID:
26129674. PMCID:
PMC4911181.
Article
20. Li J, Han S, Cousin W, Conboy IM. 2015; Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells. Stem Cells. 33:951–961. DOI:
10.1002/stem.1908. PMID:
25447026. PMCID:
PMC4333004.
Article
21. Stein GH, Drullinger LF, Soulard A, Dulić V. 1999; Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 19:2109–2117. DOI:
10.1128/MCB.19.3.2109. PMID:
10022898. PMCID:
PMC84004.
Article
25. Nam K, Oh S, Lee KM, Yoo SA, Shin I. 2015; CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal. 27:1882–1894. DOI:
10.1016/j.cellsig.2015.05.002. PMID:
25979842.
Article
26. Ludwig N, Szczepanski MJ, Gluszko A, et al. 2019; CD44(+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma. Cancer Lett. 467:85–95. DOI:
10.1016/j.canlet.2019.10.010. PMID:
31593802.
Article
29. Adhikary T, Brandt DT, Kaddatz K, et al. 2013; Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene. 32:5241–5252. DOI:
10.1038/onc.2012.549. PMID:
23208498. PMCID:
PMC3938163.
Article
30. Li X, Chen T, Shi Q, et al. 2015; Angiopoietin-like 4 enhances metastasis and inhibits apoptosis via inducing bone morphogenetic protein 7 in colorectal cancer cells. Biochem Biophys Res Commun. 467:128–134. DOI:
10.1016/j.bbrc.2015.09.104. PMID:
26417691.
Article
31. Conte M, Franceschi C, Sandri M, Salvioli S. 2016; Perilipin 2 and age-related metabolic diseases: a new perspective. Trends Endocrinol Metab. 27:893–903. DOI:
10.1016/j.tem.2016.09.001. PMID:
27659144.
Article
32. Attie AD, Kastelein JP, Hayden MR. 2001; Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J Lipid Res. 42:1717–1726. DOI:
10.1016/S0022-2275(20)31498-X. PMID:
11714841.
Article
38. Yuan SN, Wang MX, Han JL, et al. 2023; Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice. Phytomedi-cine. 112:154702. DOI:
10.1016/j.phymed.2023.154702. PMID:
36764096.
Article