Diabetes Metab J.  2023 Jul;47(4):500-513. 10.4093/dmj.2022.0110.

Beneficial Effects of a Curcumin Derivative and Transforming Growth Factor-β Receptor I Inhibitor Combination on Nonalcoholic Steatohepatitis

Affiliations
  • 1Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
  • 2Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
  • 3Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul, Korea
  • 4Department of Basic Science, Yonsei University Wonju College of Medicine, Wonju, Korea

Abstract

Background
Curcumin 2005-8 (Cur5-8), a derivative of curcumin, improves fatty liver disease via AMP-activated protein kinase activation and autophagy regulation. EW-7197 (vactosertib) is a small molecule inhibitor of transforming growth factor β (TGF-β) receptor I and may scavenge reactive oxygen species and ameliorate fibrosis through the SMAD2/3 canonical pathway. This study aimed to determine whether co-administering these two drugs having different mechanisms is beneficial.
Methods
Hepatocellular fibrosis was induced in mouse hepatocytes (alpha mouse liver 12 [AML12]) and human hepatic stellate cells (LX-2) using TGF-β (2 ng/mL). The cells were then treated with Cur5-8 (1 μM), EW-7197 (0.5 μM), or both. In animal experiments were also conducted during which, methionine-choline deficient diet, Cur5-8 (100 mg/kg), and EW-7197 (20 mg/kg) were administered orally to 8-week-old C57BL/6J mice for 6 weeks.
Results
TGF-β-induced cell morphological changes were improved by EW-7197, and lipid accumulation was restored on the administration of EW-7197 in combination with Cur5-8. In a nonalcoholic steatohepatitis (NASH)-induced mouse model, 6 weeks of EW-7197 and Cur5-8 co-administration alleviated liver fibrosis and improved the nonalcoholic fatty liver disease (NAFLD) activity score.
Conclusion
Co-administering Cur5-8 and EW-7197 to NASH-induced mice and fibrotic hepatocytes reduced liver fibrosis and steatohepatitis while maintaining the advantages of both drugs. This is the first study to show the effect of the drug combination against NASH and NAFLD. Similar effects in other animal models will confirm its potential as a new therapeutic agent.

Keyword

ALK5 inhibitor; Curcumin; Fibrosis; Non-alcoholic fatty liver disease; Transforming growth factor beta

Figure

  • Fig. 1. Curcumin 2005-8 (Cur5-8) reduces lipid accumulation in hepatocytes. (A, B, C) Cell morphology and BODIPY staining were observed under a microscope following 24 hours of oleic acid (OA) treatment. In alpha mouse liver 12 (AML12) cells, OA was combined with Cur, Cur5-8, and EW-7197. (D, E) Levels of adipose differentiation-related protein (ADRP), sterol regulatory element-binding protein 1c (Srebp1c), and fatty acid synthase (Fas) were measured using a Western blotting assay. aP<0.001 vs. control (Con), bP<0.001 vs. oleic acid, cP<0.001 vs. oleic acid+Cur5-8, dP<0.05 vs. Con, eP<0.05 vs. oleic acid.

  • Fig. 2. EW-7197 relieves hepatocellular fibrosis but has side effects. Hepatocellular fibrosis was induced by treating human hepatic stellate cell (LX-2) cells with transforming growth factor β (TGF-β; 2 ng/mL). (A, B) The ability of EW-7197 to restore the original state was tested by expressing fibrosis markers such as p-SMAD2/3, α-smooth muscle actin (α-SMA), and ColI. (C, D) Alpha mouse liver 12 (AML12) cells were treated with EW-7197 combined with TGF-β. (E, F) AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (Erk), and Akt activities were measured to determine the effect of EW-7197 treatment on the TGF-β non-canonical pathway. aP<0.05 vs. control (Con), bP<0.05 vs. TGF-β, cP<0.001 vs. Con, dP<0.001 vs. TGF-β.

  • Fig. 3. Curcumin 2005-8 (Cur5-8) and EW-7197 improves transforming growth factor β (TGF-β)-induced hepatocellular fibrosis and lipid accumulation. Hepatocellular fibrosis was induced in alpha mouse liver 12 (AML12) cells using TGF-β. The cells were then treated with Cur, Cur5-8, and EW-7197, individually or in combination (EW+Cur or EW+Cur5-8). (A) Changes in cell morphology were then visualized. (B, D) Lipid accumulation in hepatocytes was visualized using BODIPY staining. (C, E) The degree of fibrosis and lipid droplet accumulation was determined using α-smooth muscle actin (α-SMA) staining and by measuring the BODIPY-positive stained area. Veh, vehicle. aP<0.05 vs. control (Con), bP<0.05 vs. TGF-β, cP<0.001 vs. Con, dP<0.001 vs. TGF-β.

  • Fig. 4. Combinning curcumin 2005-8 (Cur5-8) and EW-7197 reduces hepatic fibrosis. To determine the effect of co-administering different combinations, we added Cur, Cur5-8, and EW-7197 separately to human hepatic stellate cell (LX-2) cells treated with transforming growth factor β (TGF-β). We also added EW-7197+Cur and EW-7197+Cur5-8 combinations. Levels of p-SMAD 2/3 proteins, members of the canonical pathway of TGF-β, α-smooth muscle actin (α-SMA), and ColI proteins, which are markers of fibrosis, were measured in (A, B) LX-2 cells and (C, D) AML12 cells. aP<0.05 vs. control (Con), bP<0.05 vs. TGF-β.

  • Fig. 5. Curcumin 2005-8 (Cur5-8) and EW-7197 co-administration improves hepatic lipid accumulation. (A, B) Accumulation of lipid droplets and variations in liver sizes were measured using H&E staining and liver imaging, respectively. (C) Nonalcoholic fatty liver disease (NAFLD) activity was scored by quantifying the degree of steatosis, hepatocyte ballooning, and lobular inflammation based on the results of H&E staining. (D, E, F) The NAFLD activity score is assigned as described in the Methods section. Metabolism-related proteins were determined by measuring rho-associated coiled-coil kinase 1 (Rock1) and sterol regulatory elementbinding protein 1c (Srebp1c) levels, AMP-activated protein kinase (AMPK) activity, and reactive oxygen species (ROS) scavenging effect. Endoplasmic reticulum stress regulation was determined by measuring Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and activating transcription factor 6α (ATF6α) levels. aP<0.05 vs. control (Con), bP<0.05 vs. methionine-choline-deficient diet (MCD), cP<0.001 vs. Con, dP<0.001 vs. MCD.

  • Fig. 6. Curcumin 2005-8 (Cur5-8) and EW ameliorate liver fibrosis. (A, B, C) Liver fibrosis was measured using Sirius red and trichrome staining. The degree of liver fibrosis in the experimental groups was compared by quantifying the positively-stained area. (D, E) Levels of extracellular matrix-related α-smooth muscle actin (α-SMA), collagen I (ColI), fibronectin, and transforming growth factor β (TGF-β) canonical pathway-related p-SMAD2/3 were measured. aP<0.05 vs. control (Con), bP<0.05 vs. methionine-choline-deficient diet (MCD), cP<0.001 vs. Con, dP<0.001 vs. MCD.


Reference

1. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019; 71:793–801.
Article
2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64:73–84.
Article
3. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018; 67:328–57.
Article
4. Dufour JF, Caussy C, Loomba R. Combination therapy for non-alcoholic steatohepatitis: rationale, opportunities and challenges. Gut. 2020; 69:1877–84.
Article
5. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007; 117:539–48.
Article
6. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008; 134:1655–69.
Article
7. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004; 18:816–27.
8. Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010; 48:1–15.
9. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000; 275:2247–50.
Article
10. Ooshima A, Park J, Kim SJ. Phosphorylation status at Smad3 linker region modulates transforming growth factor-βinduced epithelial-mesenchymal transition and cancer progression. Cancer Sci. 2019; 110:481–8.
Article
11. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000; 19:1745–54.
12. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113:685–700.
Article
13. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425:577–84.
Article
14. Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendia LE, Majeed M, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a posthoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016; 82:578–82.
Article
15. Kuptniratsaikul V, Dajpratham P, Taechaarpornkul W, Buntragulpoontawee M, Lukkanapichonchut P, Chootip C, et al. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin Interv Aging. 2014; 9:451–8.
Article
16. Jager R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM. Comparative absorption of curcumin formulations. Nutr J. 2014; 13:11.
Article
17. Lee ES, Kwon MH, Kim HM, Woo HB, Ahn CM, Chung CH. Curcumin analog CUR5-8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism. 2020; 103:154015.
Article
18. Jin CH, Krishnaiah M, Sreenu D, Subrahmanyam VB, Rao KS, Lee HJ, et al. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)- 2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J Med Chem. 2014; 57:4213–38.
19. Park SA, Kim MJ, Park SY, Kim JS, Lee SJ, Woo HA, et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell Mol Life Sci. 2015; 72:2023–39.
Article
20. Kim MJ, Park SA, Kim CH, Park SY, Kim JS, Kim DK, et al. TGF-β type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1α-induced epithelial mesenchymal transition. Cell Physiol Biochem. 2016; 38:571–88.
Article
21. Ha KB, Sangartit W, Jeong AR, Lee ES, Kim HM, Shim S, et al. EW-7197 attenuates the progression of diabetic nephropathy in db/db mice through suppression of fibrogenesis and inflammation. Endocrinol Metab (Seoul). 2022; 37:96–111.
Article
22. Rizki G, Arnaboldi L, Gabrielli B, Yan J, Lee GS, Ng RK, et al. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD1. J Lipid Res. 2006; 47:2280–90.
Article
23. Josan S, Billingsley K, Orduna J, Park JM, Luong R, Yu L, et al. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate. NMR Biomed. 2015; 28:1671–7.
24. Lepreux S, Desmouliere A. Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts. Front Physiol. 2015; 6:173.
Article
25. Issa R, Zhou X, Constandinou CM, Fallowfield J, MillwardSadler H, Gaca MD, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004; 126:1795–808.
Article
26. Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology. 2011; 140:1642–52.
Article
27. Popov Y, Schuppan D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology. 2009; 50:1294–306.
Article
28. Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol. 2010; 7:425–36.
Article
29. van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted therapies in liver fibrosis: combining the best parts of platelet-derived growth factor BB and interferon gamma. Front Med (Lausanne). 2015; 2:72.
Article
30. Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, et al. Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci (Landmark Ed). 2009; 14:3380–400.
Article
31. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive elementbinding protein by AMP-activated protein kinase. J Biol Chem. 2002; 277:3829–35.
32. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011; 13:376–88.
Article
33. Hannon GJ, Beach D. p15INK4B is a potential effector of TGFbeta-induced cell cycle arrest. Nature. 1994; 371:257–61.
Article
34. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci U S A. 1995; 92:5545–9.
Article
35. Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol. 2006; 87:1–16.
Article
36. Chowdhry S, Nazmy MH, Meakin PJ, Dinkova-Kostova AT, Walsh SV, Tsujita T, et al. Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol Med. 2010; 48:357–71.
Article
37. Larter CZ, Yeh MM, Haigh WG, Williams J, Brown S, Bell-Anderson KS, et al. Hepatic free fatty acids accumulate in experimental steatohepatitis: role of adaptive pathways. J Hepatol. 2008; 48:638–47.
Article
38. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000; 105:1067–75.
Article
39. Juluri R, Vuppalanchi R, Olson J, Unalp A, Van Natta ML, Cummings OW, et al. Generalizability of the nonalcoholic steatohepatitis Clinical Research Network histologic scoring system for nonalcoholic fatty liver disease. J Clin Gastroenterol. 2011; 45:55–8.
Article
40. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005; 41:1313–21.
Article
41. Asselah T, Marcellin P, Bedossa P. Improving performance of liver biopsy in fibrosis assessment. J Hepatol. 2014; 61:193–5.
Article
42. Huang H, Lee SH, Sousa-Lima I, Kim SS, Hwang WM, Dagon Y, et al. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest. 2018; 128:5335–50.
Article
43. Gupta J, Gaikwad AB, Tikoo K. Hepatic expression profiling shows involvement of PKC epsilon, DGK eta, Tnfaip, and Rho kinase in type 2 diabetic nephropathy rats. J Cell Biochem. 2010; 111:944–54.
Article
44. Ferre P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res. 2007; 68:72–82.
Article
45. Wu W, Tang S, Shi J, Yin W, Cao S, Bu R, et al. Metformin attenuates palmitic acid-induced insulin resistance in L6 cells through the AMP-activated protein kinase/sterol regulatory element-binding protein-1c pathway. Int J Mol Med. 2015; 35:1734–40.
Article
46. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007; 8:519–29.
Article
47. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006; 46:113–40.
Article
48. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999; 274:26071–8.
Article
49. Yen IC, Tu QW, Chang TC, Lin PH, Li YF, Lee SY. 4-Acetylantroquinonol B ameliorates nonalcoholic steatohepatitis by suppression of ER stress and NLRP3 inflammasome activation. Biomed Pharmacother. 2021; 138:111504.
Article
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr