J Yeungnam Med Sci.  2023 Jul;40(3):247-251. 10.12701/jyms.2022.00129.

Effects of propofol-remifentanil versus sevoflurane-remifentanil on acute postoperative pain after total shoulder arthroplasty: a randomized trial

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Korea
  • 2Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Korea

Abstract

Background
While some evidence indicates that propofol-based anesthesia has less postoperative pain than sevoflurane-based anesthesia, these results are controversial. We compared acute postoperative pain intensity and opioid consumption after total shoulder arthroplasty between propofol-remifentanil (PR) and sevoflurane-remifentanil (SR) anesthesia.
Methods
Among 48 patients undergoing shoulder arthroscopic surgery anesthetized with PR or SR, postoperative pain intensity was assessed at 30 minutes and at 2, 6, 12, and 24 hours. The total patient-controlled analgesia volume and number of patients requiring rescue analgesics were assessed.
Results
No significant difference in postoperative pain intensity was observed between the two groups. Postoperative opioid consumption and analgesic requirements were also comparable in the first 24 hours after surgery.
Conclusion
PR and SR anesthesia for shoulder arthroscopic surgery provide comparable postoperative analgesia results.

Keyword

Anesthesia; Propofol; Sevoflurane; Total shoulder arthroplasty

Reference

References

1. Wu CL, Raja SN. Treatment of acute postoperative pain. Lancet. 2011; 377:2215–25.
2. Cheng SS, Yeh J, Flood P. Anesthesia matters: patients anesthetized with propofol have less postoperative pain than those anesthetized with isoflurane. Anesth Analg. 2008; 106:264–9.
3. Li M, Mei W, Wang P, Yu Y, Qian W, Zhang ZG, et al. Propofol reduces early post-operative pain after gynecological laparoscopy. Acta Anaesthesiol Scand. 2012; 56:368–75.
4. Fassoulaki A, Melemeni A, Paraskeva A, Siafaka I, Sarantopoulos C. Postoperative pain and analgesic requirements after anesthesia with sevoflurane, desflurane or propofol. Anesth Analg. 2008; 107:1715–9.
5. Pokkinen SM, Yli-Hankala A, Kalliomäki ML. The effects of propofol vs. sevoflurane on post-operative pain and need of opioid. Acta Anaesthesiol Scand. 2014; 58:980–5.
6. Shin S, Min KT, Shin YS, Joo HM, Yoo YC. Finding the ‘ideal’ regimen for fentanyl-based intravenous patient-controlled analgesia: how to give and what to mix? Yonsei Med J. 2014; 55:800–6.
7. Izquierdo R, Voloshin I, Edwards S, Freehill MQ, Stanwood W, Wiater JM, et al. Treatment of glenohumeral osteoarthritis. J Am Acad Orthop Surg. 2010; 18:375–82.
8. Rathmell JP, Wu CL, Sinatra RS, Ballantyne JC, Ginsberg B, Gordon DB, et al. Acute post-surgical pain management: a critical appraisal of current practice, December 2-4, 2005. Reg Anesth Pain Med. 2006; 31(4 Suppl 1):1–42.
9. Hansen CA, Inacio MC, Pratt NL, Roughead EE, Graves SE. Chronic use of opioids before and after total knee arthroplasty: a retrospective cohort study. J Arthroplasty. 2017; 32:811–7.
10. Ilfeld BM, Wright TW, Enneking FK, Morey TE. Joint range of motion after total shoulder arthroplasty with and without a continuous interscalene nerve block: a retrospective, case-control study. Reg Anesth Pain Med. 2005; 30:429–33.
11. Antognini JF, Wang XW, Piercy M, Carstens E. Propofol directly depresses lumbar dorsal horn neuronal responses to noxious stimulation in goats. Can J Anaesth. 2000; 47:273–9.
12. Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ. Propofol and barbiturate depression of spinal nociceptive neurotransmission. Anesthesiology. 1992; 77:1148–54.
13. Goldstein FJ. Adjuncts to opioid therapy. J Am Osteopath Assoc. 2002; 102(9 Suppl 3):S15–21.
14. Holtman JR Jr, Sloan JW, Jing X, Wala EP. Modification of morphine analgesia and tolerance by flumazenil in male and female rats. Eur J Pharmacol. 2003; 470:149–56.
15. Ogurlu M, Sari S, Küçük M, Bakis M, Ugur B, Eshraghi YE, et al. Comparison of the effect of propofol and sevoflurane anaesthesia on acute and chronic postoperative pain after hysterectomy. Anaesth Intensive Care. 2014; 42:365–70.
16. Freye E, Brückner J, Latasch L. No difference in electroencephalographic power spectra or sensory-evoked potentials in patients anaesthetized with desflurane or sevoflurane. Eur J Anaesthesiol. 2004; 21:373–8.
17. Yeo ST, Holdcroft A, Yentis SM, Stewart A. Analgesia with sevoflurane during labour: I. Determination of the optimum concentration. Br J Anaesth. 2007; 98:105–9.
18. Hao S, Takahata O, Mamiya K, Iwasaki H. Sevoflurane suppresses noxious stimulus-evoked expression of Fos-like immunoreactivity in the rat spinal cord via activation of endogenous opioid systems. Life Sci. 2002; 71:571–80.
19. Rowley TJ, Daniel D, Flood P. The role of adrenergic and cholinergic transmission in volatile anesthetic-induced pain enhancement. Anesth Analg. 2005; 100:991–5.
20. Möllhoff T, Herregods L, Moerman A, Blake D, MacAdams C, Demeyere R, et al. Comparative efficacy and safety of remifentanil and fentanyl in ‘fast track’ coronary artery bypass graft surgery: a randomized, double-blind study. Br J Anaesth. 2001; 87:718–26.
21. Johansen JW, Sebel PS, Sigl JC. Clinical impact of hypnotic-titration guidelines based on EEG bispectral index (BIS) monitoring during routine anesthetic care. J Clin Anesth. 2000; 12:433–43.
22. Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M. Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain. 2003; 106:49–57.
23. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000; 93:409–17.
24. Orser BA, Bertlik M, Wang LY, MacDonald JF. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones. Br J Pharmacol. 1995; 116:1761–8.
25. Criswell HE, Ming Z, Pleasant N, Griffith BL, Mueller RA, Breese GR. Macrokinetic analysis of blockade of NMDA-gated currents by substituted alcohols, alkanes and ethers. Brain Res. 2004; 1015:107–13.
26. Hollmann MW, Liu HT, Hoenemann CW, Liu WH, Durieux ME. Modulation of NMDA receptor function by ketamine and magnesium. Part II: interactions with volatile anesthetics. Anesth Analg. 2001; 92:1182–91.
27. Shin SW, Cho AR, Lee HJ, Kim HJ, Byeon GJ, Yoon JW, et al. Maintenance anaesthetics during remifentanil-based anaesthesia might affect postoperative pain control after breast cancer surgery. Br J Anaesth. 2010; 105:661–7.
28. Kotani Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci Ther. 2008; 14:95–106.
29. Franck M, Radtke FM, Apfel CC, Kuhly R, Baumeyer A, Brandt C, et al. Documentation of post-operative nausea and vomiting in routine clinical practice. J Int Med Res. 2010; 38:1034–41.
Full Text Links
  • JYMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr